The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type
Abstract We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups $ ℤ^{d} $. In this article we prove that for each d > 1 the set of Cayley graphs...
Ausführliche Beschreibung
Autor*in: |
Kostousov, K. V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, Inc. 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Siberian mathematical journal - Kluwer Academic Publishers-Consultants Bureau, 1966, 48(2007), 3 vom: Mai, Seite 489-499 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2007 ; number:3 ; month:05 ; pages:489-499 |
Links: |
---|
DOI / URN: |
10.1007/s11202-007-0051-z |
---|
Katalog-ID: |
OLC2033380882 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033380882 | ||
003 | DE-627 | ||
005 | 20230504044050.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11202-007-0051-z |2 doi | |
035 | |a (DE-627)OLC2033380882 | ||
035 | |a (DE-He213)s11202-007-0051-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Kostousov, K. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, Inc. 2007 | ||
520 | |a Abstract We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups $ ℤ^{d} $. In this article we prove that for each d > 1 the set of Cayley graphs of $ ℤ^{d} $ presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of $ ℤ^{d} $ that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of $ ℤ^{d} $ with crystallographic groups. | ||
650 | 4 | |a vertex-primitive graph | |
650 | 4 | |a edge-transitive graph | |
650 | 4 | |a limit graph | |
650 | 4 | |a Cayley graph of a finite rank free abelian group | |
650 | 4 | |a crystallographic group | |
773 | 0 | 8 | |i Enthalten in |t Siberian mathematical journal |d Kluwer Academic Publishers-Consultants Bureau, 1966 |g 48(2007), 3 vom: Mai, Seite 489-499 |w (DE-627)129553573 |w (DE-600)220062-4 |w (DE-576)015009602 |x 0037-4466 |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2007 |g number:3 |g month:05 |g pages:489-499 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11202-007-0051-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 48 |j 2007 |e 3 |c 05 |h 489-499 |
author_variant |
k v k kv kvk |
---|---|
matchkey_str |
article:00374466:2007----::hcyegahodnteiisfetxrmt |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s11202-007-0051-z doi (DE-627)OLC2033380882 (DE-He213)s11202-007-0051-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Kostousov, K. V. verfasserin aut The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups $ ℤ^{d} $. In this article we prove that for each d > 1 the set of Cayley graphs of $ ℤ^{d} $ presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of $ ℤ^{d} $ that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of $ ℤ^{d} $ with crystallographic groups. vertex-primitive graph edge-transitive graph limit graph Cayley graph of a finite rank free abelian group crystallographic group Enthalten in Siberian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1966 48(2007), 3 vom: Mai, Seite 489-499 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:48 year:2007 number:3 month:05 pages:489-499 https://doi.org/10.1007/s11202-007-0051-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 AR 48 2007 3 05 489-499 |
spelling |
10.1007/s11202-007-0051-z doi (DE-627)OLC2033380882 (DE-He213)s11202-007-0051-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Kostousov, K. V. verfasserin aut The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups $ ℤ^{d} $. In this article we prove that for each d > 1 the set of Cayley graphs of $ ℤ^{d} $ presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of $ ℤ^{d} $ that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of $ ℤ^{d} $ with crystallographic groups. vertex-primitive graph edge-transitive graph limit graph Cayley graph of a finite rank free abelian group crystallographic group Enthalten in Siberian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1966 48(2007), 3 vom: Mai, Seite 489-499 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:48 year:2007 number:3 month:05 pages:489-499 https://doi.org/10.1007/s11202-007-0051-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 AR 48 2007 3 05 489-499 |
allfields_unstemmed |
10.1007/s11202-007-0051-z doi (DE-627)OLC2033380882 (DE-He213)s11202-007-0051-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Kostousov, K. V. verfasserin aut The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups $ ℤ^{d} $. In this article we prove that for each d > 1 the set of Cayley graphs of $ ℤ^{d} $ presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of $ ℤ^{d} $ that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of $ ℤ^{d} $ with crystallographic groups. vertex-primitive graph edge-transitive graph limit graph Cayley graph of a finite rank free abelian group crystallographic group Enthalten in Siberian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1966 48(2007), 3 vom: Mai, Seite 489-499 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:48 year:2007 number:3 month:05 pages:489-499 https://doi.org/10.1007/s11202-007-0051-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 AR 48 2007 3 05 489-499 |
allfieldsGer |
10.1007/s11202-007-0051-z doi (DE-627)OLC2033380882 (DE-He213)s11202-007-0051-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Kostousov, K. V. verfasserin aut The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups $ ℤ^{d} $. In this article we prove that for each d > 1 the set of Cayley graphs of $ ℤ^{d} $ presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of $ ℤ^{d} $ that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of $ ℤ^{d} $ with crystallographic groups. vertex-primitive graph edge-transitive graph limit graph Cayley graph of a finite rank free abelian group crystallographic group Enthalten in Siberian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1966 48(2007), 3 vom: Mai, Seite 489-499 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:48 year:2007 number:3 month:05 pages:489-499 https://doi.org/10.1007/s11202-007-0051-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 AR 48 2007 3 05 489-499 |
allfieldsSound |
10.1007/s11202-007-0051-z doi (DE-627)OLC2033380882 (DE-He213)s11202-007-0051-z-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Kostousov, K. V. verfasserin aut The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, Inc. 2007 Abstract We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups $ ℤ^{d} $. In this article we prove that for each d > 1 the set of Cayley graphs of $ ℤ^{d} $ presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of $ ℤ^{d} $ that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of $ ℤ^{d} $ with crystallographic groups. vertex-primitive graph edge-transitive graph limit graph Cayley graph of a finite rank free abelian group crystallographic group Enthalten in Siberian mathematical journal Kluwer Academic Publishers-Consultants Bureau, 1966 48(2007), 3 vom: Mai, Seite 489-499 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:48 year:2007 number:3 month:05 pages:489-499 https://doi.org/10.1007/s11202-007-0051-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 AR 48 2007 3 05 489-499 |
language |
English |
source |
Enthalten in Siberian mathematical journal 48(2007), 3 vom: Mai, Seite 489-499 volume:48 year:2007 number:3 month:05 pages:489-499 |
sourceStr |
Enthalten in Siberian mathematical journal 48(2007), 3 vom: Mai, Seite 489-499 volume:48 year:2007 number:3 month:05 pages:489-499 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
vertex-primitive graph edge-transitive graph limit graph Cayley graph of a finite rank free abelian group crystallographic group |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Siberian mathematical journal |
authorswithroles_txt_mv |
Kostousov, K. V. @@aut@@ |
publishDateDaySort_date |
2007-05-01T00:00:00Z |
hierarchy_top_id |
129553573 |
dewey-sort |
3510 |
id |
OLC2033380882 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033380882</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504044050.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11202-007-0051-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033380882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11202-007-0051-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kostousov, K. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups $ ℤ^{d} $. In this article we prove that for each d > 1 the set of Cayley graphs of $ ℤ^{d} $ presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of $ ℤ^{d} $ that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of $ ℤ^{d} $ with crystallographic groups.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vertex-primitive graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">edge-transitive graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">limit graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cayley graph of a finite rank free abelian group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crystallographic group</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Siberian mathematical journal</subfield><subfield code="d">Kluwer Academic Publishers-Consultants Bureau, 1966</subfield><subfield code="g">48(2007), 3 vom: Mai, Seite 489-499</subfield><subfield code="w">(DE-627)129553573</subfield><subfield code="w">(DE-600)220062-4</subfield><subfield code="w">(DE-576)015009602</subfield><subfield code="x">0037-4466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:489-499</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11202-007-0051-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="c">05</subfield><subfield code="h">489-499</subfield></datafield></record></collection>
|
author |
Kostousov, K. V. |
spellingShingle |
Kostousov, K. V. ddc 510 ssgn 17,1 misc vertex-primitive graph misc edge-transitive graph misc limit graph misc Cayley graph of a finite rank free abelian group misc crystallographic group The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type |
authorStr |
Kostousov, K. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129553573 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0037-4466 |
topic_title |
510 VZ 17,1 ssgn The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type vertex-primitive graph edge-transitive graph limit graph Cayley graph of a finite rank free abelian group crystallographic group |
topic |
ddc 510 ssgn 17,1 misc vertex-primitive graph misc edge-transitive graph misc limit graph misc Cayley graph of a finite rank free abelian group misc crystallographic group |
topic_unstemmed |
ddc 510 ssgn 17,1 misc vertex-primitive graph misc edge-transitive graph misc limit graph misc Cayley graph of a finite rank free abelian group misc crystallographic group |
topic_browse |
ddc 510 ssgn 17,1 misc vertex-primitive graph misc edge-transitive graph misc limit graph misc Cayley graph of a finite rank free abelian group misc crystallographic group |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Siberian mathematical journal |
hierarchy_parent_id |
129553573 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Siberian mathematical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 |
title |
The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type |
ctrlnum |
(DE-627)OLC2033380882 (DE-He213)s11202-007-0051-z-p |
title_full |
The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type |
author_sort |
Kostousov, K. V. |
journal |
Siberian mathematical journal |
journalStr |
Siberian mathematical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
489 |
author_browse |
Kostousov, K. V. |
container_volume |
48 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Kostousov, K. V. |
doi_str_mv |
10.1007/s11202-007-0051-z |
dewey-full |
510 |
title_sort |
the cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of ha-type |
title_auth |
The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type |
abstract |
Abstract We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups $ ℤ^{d} $. In this article we prove that for each d > 1 the set of Cayley graphs of $ ℤ^{d} $ presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of $ ℤ^{d} $ that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of $ ℤ^{d} $ with crystallographic groups. © Springer Science+Business Media, Inc. 2007 |
abstractGer |
Abstract We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups $ ℤ^{d} $. In this article we prove that for each d > 1 the set of Cayley graphs of $ ℤ^{d} $ presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of $ ℤ^{d} $ that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of $ ℤ^{d} $ with crystallographic groups. © Springer Science+Business Media, Inc. 2007 |
abstract_unstemmed |
Abstract We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups $ ℤ^{d} $. In this article we prove that for each d > 1 the set of Cayley graphs of $ ℤ^{d} $ presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of $ ℤ^{d} $ that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of $ ℤ^{d} $ with crystallographic groups. © Springer Science+Business Media, Inc. 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_70 GBV_ILN_2088 |
container_issue |
3 |
title_short |
The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type |
url |
https://doi.org/10.1007/s11202-007-0051-z |
remote_bool |
false |
ppnlink |
129553573 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11202-007-0051-z |
up_date |
2024-07-03T16:46:23.027Z |
_version_ |
1803577126321913856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033380882</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504044050.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11202-007-0051-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033380882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11202-007-0051-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kostousov, K. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Cayley graphs of $ ℤ^{d} $ and the limits of vertex-primitive graphs of HA-type</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, Inc. 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the limits of the finite graphs that admit some vertex-primitive group of automorphisms with a regular abelian normal subgroup. It was shown in [1] that these limits are Cayley graphs of the groups $ ℤ^{d} $. In this article we prove that for each d > 1 the set of Cayley graphs of $ ℤ^{d} $ presenting the limits of finite graphs with vertex-primitive and edge-transitive groups of automorphisms is countable (in fact, we explicitly give countable subsets of these limit graphs). In addition, for d < 4 we list all Cayley graphs of $ ℤ^{d} $ that are limits of minimal vertex-primitive graphs. The proofs rely on a connection of the automorphism groups of Cayley graphs of $ ℤ^{d} $ with crystallographic groups.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vertex-primitive graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">edge-transitive graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">limit graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cayley graph of a finite rank free abelian group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crystallographic group</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Siberian mathematical journal</subfield><subfield code="d">Kluwer Academic Publishers-Consultants Bureau, 1966</subfield><subfield code="g">48(2007), 3 vom: Mai, Seite 489-499</subfield><subfield code="w">(DE-627)129553573</subfield><subfield code="w">(DE-600)220062-4</subfield><subfield code="w">(DE-576)015009602</subfield><subfield code="x">0037-4466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:3</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:489-499</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11202-007-0051-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2007</subfield><subfield code="e">3</subfield><subfield code="c">05</subfield><subfield code="h">489-499</subfield></datafield></record></collection>
|
score |
7.400977 |