Finite π-groups with normal injectors
Abstract Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F ≠ (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal subgroup of G. We study the properties of π-normal F...
Ausführliche Beschreibung
Autor*in: |
Vorob’ev, N. T. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Siberian mathematical journal - Pleiades Publishing, 1966, 56(2015), 4 vom: Juli, Seite 624-630 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2015 ; number:4 ; month:07 ; pages:624-630 |
Links: |
---|
DOI / URN: |
10.1134/S0037446615040060 |
---|
Katalog-ID: |
OLC2033389111 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033389111 | ||
003 | DE-627 | ||
005 | 20230504044152.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0037446615040060 |2 doi | |
035 | |a (DE-627)OLC2033389111 | ||
035 | |a (DE-He213)S0037446615040060-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Vorob’ev, N. T. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Finite π-groups with normal injectors |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2015 | ||
520 | |a Abstract Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F ≠ (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal subgroup of G. We study the properties of π-normal Fitting classes. Using Lockett operators, we prove a criterion for the π-normality of products of Fitting classes. A π-normal Fitting class is normal in the case π = P. The lattice of all solvable normal Fitting classes is a sublattice of the lattice of all solvable Fitting classes; but the question of modularity of the lattice of all solvable Fitting classes is open (see Question 14.47 in [1]). We obtain a positive answer to a similar question in the case of π-normal Fitting classes. | ||
650 | 4 | |a Fitting class | |
650 | 4 | |a π-normal Fitting class | |
650 | 4 | |a product of Fitting classes | |
650 | 4 | |a lattice join of Fitting classes | |
700 | 1 | |a Martsinkevich, A. V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Siberian mathematical journal |d Pleiades Publishing, 1966 |g 56(2015), 4 vom: Juli, Seite 624-630 |w (DE-627)129553573 |w (DE-600)220062-4 |w (DE-576)015009602 |x 0037-4466 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2015 |g number:4 |g month:07 |g pages:624-630 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0037446615040060 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 56 |j 2015 |e 4 |c 07 |h 624-630 |
author_variant |
n t v nt ntv a v m av avm |
---|---|
matchkey_str |
article:00374466:2015----::iierusihom |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1134/S0037446615040060 doi (DE-627)OLC2033389111 (DE-He213)S0037446615040060-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Vorob’ev, N. T. verfasserin aut Finite π-groups with normal injectors 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F ≠ (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal subgroup of G. We study the properties of π-normal Fitting classes. Using Lockett operators, we prove a criterion for the π-normality of products of Fitting classes. A π-normal Fitting class is normal in the case π = P. The lattice of all solvable normal Fitting classes is a sublattice of the lattice of all solvable Fitting classes; but the question of modularity of the lattice of all solvable Fitting classes is open (see Question 14.47 in [1]). We obtain a positive answer to a similar question in the case of π-normal Fitting classes. Fitting class π-normal Fitting class product of Fitting classes lattice join of Fitting classes Martsinkevich, A. V. aut Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 56(2015), 4 vom: Juli, Seite 624-630 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:56 year:2015 number:4 month:07 pages:624-630 https://doi.org/10.1134/S0037446615040060 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 56 2015 4 07 624-630 |
spelling |
10.1134/S0037446615040060 doi (DE-627)OLC2033389111 (DE-He213)S0037446615040060-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Vorob’ev, N. T. verfasserin aut Finite π-groups with normal injectors 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F ≠ (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal subgroup of G. We study the properties of π-normal Fitting classes. Using Lockett operators, we prove a criterion for the π-normality of products of Fitting classes. A π-normal Fitting class is normal in the case π = P. The lattice of all solvable normal Fitting classes is a sublattice of the lattice of all solvable Fitting classes; but the question of modularity of the lattice of all solvable Fitting classes is open (see Question 14.47 in [1]). We obtain a positive answer to a similar question in the case of π-normal Fitting classes. Fitting class π-normal Fitting class product of Fitting classes lattice join of Fitting classes Martsinkevich, A. V. aut Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 56(2015), 4 vom: Juli, Seite 624-630 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:56 year:2015 number:4 month:07 pages:624-630 https://doi.org/10.1134/S0037446615040060 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 56 2015 4 07 624-630 |
allfields_unstemmed |
10.1134/S0037446615040060 doi (DE-627)OLC2033389111 (DE-He213)S0037446615040060-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Vorob’ev, N. T. verfasserin aut Finite π-groups with normal injectors 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F ≠ (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal subgroup of G. We study the properties of π-normal Fitting classes. Using Lockett operators, we prove a criterion for the π-normality of products of Fitting classes. A π-normal Fitting class is normal in the case π = P. The lattice of all solvable normal Fitting classes is a sublattice of the lattice of all solvable Fitting classes; but the question of modularity of the lattice of all solvable Fitting classes is open (see Question 14.47 in [1]). We obtain a positive answer to a similar question in the case of π-normal Fitting classes. Fitting class π-normal Fitting class product of Fitting classes lattice join of Fitting classes Martsinkevich, A. V. aut Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 56(2015), 4 vom: Juli, Seite 624-630 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:56 year:2015 number:4 month:07 pages:624-630 https://doi.org/10.1134/S0037446615040060 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 56 2015 4 07 624-630 |
allfieldsGer |
10.1134/S0037446615040060 doi (DE-627)OLC2033389111 (DE-He213)S0037446615040060-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Vorob’ev, N. T. verfasserin aut Finite π-groups with normal injectors 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F ≠ (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal subgroup of G. We study the properties of π-normal Fitting classes. Using Lockett operators, we prove a criterion for the π-normality of products of Fitting classes. A π-normal Fitting class is normal in the case π = P. The lattice of all solvable normal Fitting classes is a sublattice of the lattice of all solvable Fitting classes; but the question of modularity of the lattice of all solvable Fitting classes is open (see Question 14.47 in [1]). We obtain a positive answer to a similar question in the case of π-normal Fitting classes. Fitting class π-normal Fitting class product of Fitting classes lattice join of Fitting classes Martsinkevich, A. V. aut Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 56(2015), 4 vom: Juli, Seite 624-630 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:56 year:2015 number:4 month:07 pages:624-630 https://doi.org/10.1134/S0037446615040060 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 56 2015 4 07 624-630 |
allfieldsSound |
10.1134/S0037446615040060 doi (DE-627)OLC2033389111 (DE-He213)S0037446615040060-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Vorob’ev, N. T. verfasserin aut Finite π-groups with normal injectors 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F ≠ (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal subgroup of G. We study the properties of π-normal Fitting classes. Using Lockett operators, we prove a criterion for the π-normality of products of Fitting classes. A π-normal Fitting class is normal in the case π = P. The lattice of all solvable normal Fitting classes is a sublattice of the lattice of all solvable Fitting classes; but the question of modularity of the lattice of all solvable Fitting classes is open (see Question 14.47 in [1]). We obtain a positive answer to a similar question in the case of π-normal Fitting classes. Fitting class π-normal Fitting class product of Fitting classes lattice join of Fitting classes Martsinkevich, A. V. aut Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 56(2015), 4 vom: Juli, Seite 624-630 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:56 year:2015 number:4 month:07 pages:624-630 https://doi.org/10.1134/S0037446615040060 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 56 2015 4 07 624-630 |
language |
English |
source |
Enthalten in Siberian mathematical journal 56(2015), 4 vom: Juli, Seite 624-630 volume:56 year:2015 number:4 month:07 pages:624-630 |
sourceStr |
Enthalten in Siberian mathematical journal 56(2015), 4 vom: Juli, Seite 624-630 volume:56 year:2015 number:4 month:07 pages:624-630 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fitting class π-normal Fitting class product of Fitting classes lattice join of Fitting classes |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Siberian mathematical journal |
authorswithroles_txt_mv |
Vorob’ev, N. T. @@aut@@ Martsinkevich, A. V. @@aut@@ |
publishDateDaySort_date |
2015-07-01T00:00:00Z |
hierarchy_top_id |
129553573 |
dewey-sort |
3510 |
id |
OLC2033389111 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033389111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504044152.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0037446615040060</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033389111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0037446615040060-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vorob’ev, N. T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite π-groups with normal injectors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F ≠ (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal subgroup of G. We study the properties of π-normal Fitting classes. Using Lockett operators, we prove a criterion for the π-normality of products of Fitting classes. A π-normal Fitting class is normal in the case π = P. The lattice of all solvable normal Fitting classes is a sublattice of the lattice of all solvable Fitting classes; but the question of modularity of the lattice of all solvable Fitting classes is open (see Question 14.47 in [1]). We obtain a positive answer to a similar question in the case of π-normal Fitting classes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fitting class</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">π-normal Fitting class</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">product of Fitting classes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lattice join of Fitting classes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martsinkevich, A. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Siberian mathematical journal</subfield><subfield code="d">Pleiades Publishing, 1966</subfield><subfield code="g">56(2015), 4 vom: Juli, Seite 624-630</subfield><subfield code="w">(DE-627)129553573</subfield><subfield code="w">(DE-600)220062-4</subfield><subfield code="w">(DE-576)015009602</subfield><subfield code="x">0037-4466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:624-630</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0037446615040060</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">624-630</subfield></datafield></record></collection>
|
author |
Vorob’ev, N. T. |
spellingShingle |
Vorob’ev, N. T. ddc 510 ssgn 17,1 misc Fitting class misc π-normal Fitting class misc product of Fitting classes misc lattice join of Fitting classes Finite π-groups with normal injectors |
authorStr |
Vorob’ev, N. T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129553573 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0037-4466 |
topic_title |
510 VZ 17,1 ssgn Finite π-groups with normal injectors Fitting class π-normal Fitting class product of Fitting classes lattice join of Fitting classes |
topic |
ddc 510 ssgn 17,1 misc Fitting class misc π-normal Fitting class misc product of Fitting classes misc lattice join of Fitting classes |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Fitting class misc π-normal Fitting class misc product of Fitting classes misc lattice join of Fitting classes |
topic_browse |
ddc 510 ssgn 17,1 misc Fitting class misc π-normal Fitting class misc product of Fitting classes misc lattice join of Fitting classes |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Siberian mathematical journal |
hierarchy_parent_id |
129553573 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Siberian mathematical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 |
title |
Finite π-groups with normal injectors |
ctrlnum |
(DE-627)OLC2033389111 (DE-He213)S0037446615040060-p |
title_full |
Finite π-groups with normal injectors |
author_sort |
Vorob’ev, N. T. |
journal |
Siberian mathematical journal |
journalStr |
Siberian mathematical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
624 |
author_browse |
Vorob’ev, N. T. Martsinkevich, A. V. |
container_volume |
56 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Vorob’ev, N. T. |
doi_str_mv |
10.1134/S0037446615040060 |
dewey-full |
510 |
title_sort |
finite π-groups with normal injectors |
title_auth |
Finite π-groups with normal injectors |
abstract |
Abstract Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F ≠ (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal subgroup of G. We study the properties of π-normal Fitting classes. Using Lockett operators, we prove a criterion for the π-normality of products of Fitting classes. A π-normal Fitting class is normal in the case π = P. The lattice of all solvable normal Fitting classes is a sublattice of the lattice of all solvable Fitting classes; but the question of modularity of the lattice of all solvable Fitting classes is open (see Question 14.47 in [1]). We obtain a positive answer to a similar question in the case of π-normal Fitting classes. © Pleiades Publishing, Ltd. 2015 |
abstractGer |
Abstract Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F ≠ (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal subgroup of G. We study the properties of π-normal Fitting classes. Using Lockett operators, we prove a criterion for the π-normality of products of Fitting classes. A π-normal Fitting class is normal in the case π = P. The lattice of all solvable normal Fitting classes is a sublattice of the lattice of all solvable Fitting classes; but the question of modularity of the lattice of all solvable Fitting classes is open (see Question 14.47 in [1]). We obtain a positive answer to a similar question in the case of π-normal Fitting classes. © Pleiades Publishing, Ltd. 2015 |
abstract_unstemmed |
Abstract Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F ≠ (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal subgroup of G. We study the properties of π-normal Fitting classes. Using Lockett operators, we prove a criterion for the π-normality of products of Fitting classes. A π-normal Fitting class is normal in the case π = P. The lattice of all solvable normal Fitting classes is a sublattice of the lattice of all solvable Fitting classes; but the question of modularity of the lattice of all solvable Fitting classes is open (see Question 14.47 in [1]). We obtain a positive answer to a similar question in the case of π-normal Fitting classes. © Pleiades Publishing, Ltd. 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 |
container_issue |
4 |
title_short |
Finite π-groups with normal injectors |
url |
https://doi.org/10.1134/S0037446615040060 |
remote_bool |
false |
author2 |
Martsinkevich, A. V. |
author2Str |
Martsinkevich, A. V. |
ppnlink |
129553573 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0037446615040060 |
up_date |
2024-07-03T16:47:54.183Z |
_version_ |
1803577221905907712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033389111</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504044152.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0037446615040060</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033389111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0037446615040060-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vorob’ev, N. T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite π-groups with normal injectors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Denote by P the set of all primes and take a nonempty set π ⊆ P. A Fitting class F ≠ (1) is called normal in the class Sπ of all finite soluble π-groups or π-normal, whenever F ⊆ Sπ and for every G ∈ Sπ its F-injectors constitute a normal subgroup of G. We study the properties of π-normal Fitting classes. Using Lockett operators, we prove a criterion for the π-normality of products of Fitting classes. A π-normal Fitting class is normal in the case π = P. The lattice of all solvable normal Fitting classes is a sublattice of the lattice of all solvable Fitting classes; but the question of modularity of the lattice of all solvable Fitting classes is open (see Question 14.47 in [1]). We obtain a positive answer to a similar question in the case of π-normal Fitting classes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fitting class</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">π-normal Fitting class</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">product of Fitting classes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lattice join of Fitting classes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martsinkevich, A. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Siberian mathematical journal</subfield><subfield code="d">Pleiades Publishing, 1966</subfield><subfield code="g">56(2015), 4 vom: Juli, Seite 624-630</subfield><subfield code="w">(DE-627)129553573</subfield><subfield code="w">(DE-600)220062-4</subfield><subfield code="w">(DE-576)015009602</subfield><subfield code="x">0037-4466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:624-630</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0037446615040060</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2015</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">624-630</subfield></datafield></record></collection>
|
score |
7.4006615 |