Some notes on the rank of a finite soluble group
Let G be a finite group and let σ = {σi|i ∈ I} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A1 × ⋯ × Ar, where Ai is a $${\sigma _{{i_j}}}$$-group for some ij = ij(Ai). A collection ℋ of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of ℋ is a Ha...
Ausführliche Beschreibung
Autor*in: |
Zhang, L. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Siberian mathematical journal - Pleiades Publishing, 1966, 58(2017), 5 vom: Sept., Seite 915-922 |
---|---|
Übergeordnetes Werk: |
volume:58 ; year:2017 ; number:5 ; month:09 ; pages:915-922 |
Links: |
---|
DOI / URN: |
10.1134/S0037446617050196 |
---|
Katalog-ID: |
OLC203339137X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC203339137X | ||
003 | DE-627 | ||
005 | 20230504044211.0 | ||
007 | tu | ||
008 | 200819s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0037446617050196 |2 doi | |
035 | |a (DE-627)OLC203339137X | ||
035 | |a (DE-He213)S0037446617050196-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Zhang, L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Some notes on the rank of a finite soluble group |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2017 | ||
520 | |a Let G be a finite group and let σ = {σi|i ∈ I} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A1 × ⋯ × Ar, where Ai is a $${\sigma _{{i_j}}}$$-group for some ij = ij(Ai). A collection ℋ of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of ℋ is a Hall σi-subgroup of G for some i ∈ I and ℋ has exactly one Hall σi-subgroup of G for every i such that σi ∩ π(G) ≠ ø. A subgroup A of G is called σ-quasinormal or σ-permutable [1] in G if G possesses a complete Hall σ-set ℋ such that AHx = HxA for all H ∈ ℋ and x ∈ G. The symbol r(G) (rp(G)) denotes the rank (p-rank) of G. Assume that ℋ is a complete Hall σ-set of G. We prove that (i) if G is soluble, r(H) ≤ r ∈ ℕ for all H ∈ ℋ, and every n-maximal subgroup of G (n > 1) is σ-quasinormal in G, then r(G) ≤ n+r − 2; (ii) if every member in ℋ is soluble and every n-minimal subgroup of G is σ-quasinormal, then G is soluble and rp(G) ≤ n + rp(H) − 1 for all H ∈ ℋ and odd p ∈ π(H). | ||
650 | 4 | |a finite group | |
650 | 4 | |a rank of a soluble group | |
650 | 4 | |a -quasinormal subgroup | |
650 | 4 | |a -maximal subgroup | |
650 | 4 | |a -soluble group | |
700 | 1 | |a Guo, W. |4 aut | |
700 | 1 | |a Skiba, A. N. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Siberian mathematical journal |d Pleiades Publishing, 1966 |g 58(2017), 5 vom: Sept., Seite 915-922 |w (DE-627)129553573 |w (DE-600)220062-4 |w (DE-576)015009602 |x 0037-4466 |7 nnns |
773 | 1 | 8 | |g volume:58 |g year:2017 |g number:5 |g month:09 |g pages:915-922 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0037446617050196 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
951 | |a AR | ||
952 | |d 58 |j 2017 |e 5 |c 09 |h 915-922 |
author_variant |
l z lz w g wg a n s an ans |
---|---|
matchkey_str |
article:00374466:2017----::oeoeoteakffnt |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1134/S0037446617050196 doi (DE-627)OLC203339137X (DE-He213)S0037446617050196-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Zhang, L. verfasserin aut Some notes on the rank of a finite soluble group 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2017 Let G be a finite group and let σ = {σi|i ∈ I} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A1 × ⋯ × Ar, where Ai is a $${\sigma _{{i_j}}}$$-group for some ij = ij(Ai). A collection ℋ of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of ℋ is a Hall σi-subgroup of G for some i ∈ I and ℋ has exactly one Hall σi-subgroup of G for every i such that σi ∩ π(G) ≠ ø. A subgroup A of G is called σ-quasinormal or σ-permutable [1] in G if G possesses a complete Hall σ-set ℋ such that AHx = HxA for all H ∈ ℋ and x ∈ G. The symbol r(G) (rp(G)) denotes the rank (p-rank) of G. Assume that ℋ is a complete Hall σ-set of G. We prove that (i) if G is soluble, r(H) ≤ r ∈ ℕ for all H ∈ ℋ, and every n-maximal subgroup of G (n > 1) is σ-quasinormal in G, then r(G) ≤ n+r − 2; (ii) if every member in ℋ is soluble and every n-minimal subgroup of G is σ-quasinormal, then G is soluble and rp(G) ≤ n + rp(H) − 1 for all H ∈ ℋ and odd p ∈ π(H). finite group rank of a soluble group -quasinormal subgroup -maximal subgroup -soluble group Guo, W. aut Skiba, A. N. aut Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 58(2017), 5 vom: Sept., Seite 915-922 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:58 year:2017 number:5 month:09 pages:915-922 https://doi.org/10.1134/S0037446617050196 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 58 2017 5 09 915-922 |
spelling |
10.1134/S0037446617050196 doi (DE-627)OLC203339137X (DE-He213)S0037446617050196-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Zhang, L. verfasserin aut Some notes on the rank of a finite soluble group 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2017 Let G be a finite group and let σ = {σi|i ∈ I} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A1 × ⋯ × Ar, where Ai is a $${\sigma _{{i_j}}}$$-group for some ij = ij(Ai). A collection ℋ of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of ℋ is a Hall σi-subgroup of G for some i ∈ I and ℋ has exactly one Hall σi-subgroup of G for every i such that σi ∩ π(G) ≠ ø. A subgroup A of G is called σ-quasinormal or σ-permutable [1] in G if G possesses a complete Hall σ-set ℋ such that AHx = HxA for all H ∈ ℋ and x ∈ G. The symbol r(G) (rp(G)) denotes the rank (p-rank) of G. Assume that ℋ is a complete Hall σ-set of G. We prove that (i) if G is soluble, r(H) ≤ r ∈ ℕ for all H ∈ ℋ, and every n-maximal subgroup of G (n > 1) is σ-quasinormal in G, then r(G) ≤ n+r − 2; (ii) if every member in ℋ is soluble and every n-minimal subgroup of G is σ-quasinormal, then G is soluble and rp(G) ≤ n + rp(H) − 1 for all H ∈ ℋ and odd p ∈ π(H). finite group rank of a soluble group -quasinormal subgroup -maximal subgroup -soluble group Guo, W. aut Skiba, A. N. aut Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 58(2017), 5 vom: Sept., Seite 915-922 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:58 year:2017 number:5 month:09 pages:915-922 https://doi.org/10.1134/S0037446617050196 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 58 2017 5 09 915-922 |
allfields_unstemmed |
10.1134/S0037446617050196 doi (DE-627)OLC203339137X (DE-He213)S0037446617050196-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Zhang, L. verfasserin aut Some notes on the rank of a finite soluble group 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2017 Let G be a finite group and let σ = {σi|i ∈ I} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A1 × ⋯ × Ar, where Ai is a $${\sigma _{{i_j}}}$$-group for some ij = ij(Ai). A collection ℋ of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of ℋ is a Hall σi-subgroup of G for some i ∈ I and ℋ has exactly one Hall σi-subgroup of G for every i such that σi ∩ π(G) ≠ ø. A subgroup A of G is called σ-quasinormal or σ-permutable [1] in G if G possesses a complete Hall σ-set ℋ such that AHx = HxA for all H ∈ ℋ and x ∈ G. The symbol r(G) (rp(G)) denotes the rank (p-rank) of G. Assume that ℋ is a complete Hall σ-set of G. We prove that (i) if G is soluble, r(H) ≤ r ∈ ℕ for all H ∈ ℋ, and every n-maximal subgroup of G (n > 1) is σ-quasinormal in G, then r(G) ≤ n+r − 2; (ii) if every member in ℋ is soluble and every n-minimal subgroup of G is σ-quasinormal, then G is soluble and rp(G) ≤ n + rp(H) − 1 for all H ∈ ℋ and odd p ∈ π(H). finite group rank of a soluble group -quasinormal subgroup -maximal subgroup -soluble group Guo, W. aut Skiba, A. N. aut Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 58(2017), 5 vom: Sept., Seite 915-922 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:58 year:2017 number:5 month:09 pages:915-922 https://doi.org/10.1134/S0037446617050196 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 58 2017 5 09 915-922 |
allfieldsGer |
10.1134/S0037446617050196 doi (DE-627)OLC203339137X (DE-He213)S0037446617050196-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Zhang, L. verfasserin aut Some notes on the rank of a finite soluble group 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2017 Let G be a finite group and let σ = {σi|i ∈ I} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A1 × ⋯ × Ar, where Ai is a $${\sigma _{{i_j}}}$$-group for some ij = ij(Ai). A collection ℋ of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of ℋ is a Hall σi-subgroup of G for some i ∈ I and ℋ has exactly one Hall σi-subgroup of G for every i such that σi ∩ π(G) ≠ ø. A subgroup A of G is called σ-quasinormal or σ-permutable [1] in G if G possesses a complete Hall σ-set ℋ such that AHx = HxA for all H ∈ ℋ and x ∈ G. The symbol r(G) (rp(G)) denotes the rank (p-rank) of G. Assume that ℋ is a complete Hall σ-set of G. We prove that (i) if G is soluble, r(H) ≤ r ∈ ℕ for all H ∈ ℋ, and every n-maximal subgroup of G (n > 1) is σ-quasinormal in G, then r(G) ≤ n+r − 2; (ii) if every member in ℋ is soluble and every n-minimal subgroup of G is σ-quasinormal, then G is soluble and rp(G) ≤ n + rp(H) − 1 for all H ∈ ℋ and odd p ∈ π(H). finite group rank of a soluble group -quasinormal subgroup -maximal subgroup -soluble group Guo, W. aut Skiba, A. N. aut Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 58(2017), 5 vom: Sept., Seite 915-922 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:58 year:2017 number:5 month:09 pages:915-922 https://doi.org/10.1134/S0037446617050196 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 58 2017 5 09 915-922 |
allfieldsSound |
10.1134/S0037446617050196 doi (DE-627)OLC203339137X (DE-He213)S0037446617050196-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Zhang, L. verfasserin aut Some notes on the rank of a finite soluble group 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Ltd. 2017 Let G be a finite group and let σ = {σi|i ∈ I} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A1 × ⋯ × Ar, where Ai is a $${\sigma _{{i_j}}}$$-group for some ij = ij(Ai). A collection ℋ of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of ℋ is a Hall σi-subgroup of G for some i ∈ I and ℋ has exactly one Hall σi-subgroup of G for every i such that σi ∩ π(G) ≠ ø. A subgroup A of G is called σ-quasinormal or σ-permutable [1] in G if G possesses a complete Hall σ-set ℋ such that AHx = HxA for all H ∈ ℋ and x ∈ G. The symbol r(G) (rp(G)) denotes the rank (p-rank) of G. Assume that ℋ is a complete Hall σ-set of G. We prove that (i) if G is soluble, r(H) ≤ r ∈ ℕ for all H ∈ ℋ, and every n-maximal subgroup of G (n > 1) is σ-quasinormal in G, then r(G) ≤ n+r − 2; (ii) if every member in ℋ is soluble and every n-minimal subgroup of G is σ-quasinormal, then G is soluble and rp(G) ≤ n + rp(H) − 1 for all H ∈ ℋ and odd p ∈ π(H). finite group rank of a soluble group -quasinormal subgroup -maximal subgroup -soluble group Guo, W. aut Skiba, A. N. aut Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 58(2017), 5 vom: Sept., Seite 915-922 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:58 year:2017 number:5 month:09 pages:915-922 https://doi.org/10.1134/S0037446617050196 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 AR 58 2017 5 09 915-922 |
language |
English |
source |
Enthalten in Siberian mathematical journal 58(2017), 5 vom: Sept., Seite 915-922 volume:58 year:2017 number:5 month:09 pages:915-922 |
sourceStr |
Enthalten in Siberian mathematical journal 58(2017), 5 vom: Sept., Seite 915-922 volume:58 year:2017 number:5 month:09 pages:915-922 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
finite group rank of a soluble group -quasinormal subgroup -maximal subgroup -soluble group |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Siberian mathematical journal |
authorswithroles_txt_mv |
Zhang, L. @@aut@@ Guo, W. @@aut@@ Skiba, A. N. @@aut@@ |
publishDateDaySort_date |
2017-09-01T00:00:00Z |
hierarchy_top_id |
129553573 |
dewey-sort |
3510 |
id |
OLC203339137X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203339137X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504044211.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0037446617050196</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203339137X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0037446617050196-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some notes on the rank of a finite soluble group</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let G be a finite group and let σ = {σi|i ∈ I} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A1 × ⋯ × Ar, where Ai is a $${\sigma _{{i_j}}}$$-group for some ij = ij(Ai). A collection ℋ of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of ℋ is a Hall σi-subgroup of G for some i ∈ I and ℋ has exactly one Hall σi-subgroup of G for every i such that σi ∩ π(G) ≠ ø. A subgroup A of G is called σ-quasinormal or σ-permutable [1] in G if G possesses a complete Hall σ-set ℋ such that AHx = HxA for all H ∈ ℋ and x ∈ G. The symbol r(G) (rp(G)) denotes the rank (p-rank) of G. Assume that ℋ is a complete Hall σ-set of G. We prove that (i) if G is soluble, r(H) ≤ r ∈ ℕ for all H ∈ ℋ, and every n-maximal subgroup of G (n > 1) is σ-quasinormal in G, then r(G) ≤ n+r − 2; (ii) if every member in ℋ is soluble and every n-minimal subgroup of G is σ-quasinormal, then G is soluble and rp(G) ≤ n + rp(H) − 1 for all H ∈ ℋ and odd p ∈ π(H).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rank of a soluble group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-quasinormal subgroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-maximal subgroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-soluble group</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skiba, A. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Siberian mathematical journal</subfield><subfield code="d">Pleiades Publishing, 1966</subfield><subfield code="g">58(2017), 5 vom: Sept., Seite 915-922</subfield><subfield code="w">(DE-627)129553573</subfield><subfield code="w">(DE-600)220062-4</subfield><subfield code="w">(DE-576)015009602</subfield><subfield code="x">0037-4466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:915-922</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0037446617050196</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="c">09</subfield><subfield code="h">915-922</subfield></datafield></record></collection>
|
author |
Zhang, L. |
spellingShingle |
Zhang, L. ddc 510 ssgn 17,1 misc finite group misc rank of a soluble group misc -quasinormal subgroup misc -maximal subgroup misc -soluble group Some notes on the rank of a finite soluble group |
authorStr |
Zhang, L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129553573 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0037-4466 |
topic_title |
510 VZ 17,1 ssgn Some notes on the rank of a finite soluble group finite group rank of a soluble group -quasinormal subgroup -maximal subgroup -soluble group |
topic |
ddc 510 ssgn 17,1 misc finite group misc rank of a soluble group misc -quasinormal subgroup misc -maximal subgroup misc -soluble group |
topic_unstemmed |
ddc 510 ssgn 17,1 misc finite group misc rank of a soluble group misc -quasinormal subgroup misc -maximal subgroup misc -soluble group |
topic_browse |
ddc 510 ssgn 17,1 misc finite group misc rank of a soluble group misc -quasinormal subgroup misc -maximal subgroup misc -soluble group |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Siberian mathematical journal |
hierarchy_parent_id |
129553573 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Siberian mathematical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 |
title |
Some notes on the rank of a finite soluble group |
ctrlnum |
(DE-627)OLC203339137X (DE-He213)S0037446617050196-p |
title_full |
Some notes on the rank of a finite soluble group |
author_sort |
Zhang, L. |
journal |
Siberian mathematical journal |
journalStr |
Siberian mathematical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
915 |
author_browse |
Zhang, L. Guo, W. Skiba, A. N. |
container_volume |
58 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Zhang, L. |
doi_str_mv |
10.1134/S0037446617050196 |
dewey-full |
510 |
title_sort |
some notes on the rank of a finite soluble group |
title_auth |
Some notes on the rank of a finite soluble group |
abstract |
Let G be a finite group and let σ = {σi|i ∈ I} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A1 × ⋯ × Ar, where Ai is a $${\sigma _{{i_j}}}$$-group for some ij = ij(Ai). A collection ℋ of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of ℋ is a Hall σi-subgroup of G for some i ∈ I and ℋ has exactly one Hall σi-subgroup of G for every i such that σi ∩ π(G) ≠ ø. A subgroup A of G is called σ-quasinormal or σ-permutable [1] in G if G possesses a complete Hall σ-set ℋ such that AHx = HxA for all H ∈ ℋ and x ∈ G. The symbol r(G) (rp(G)) denotes the rank (p-rank) of G. Assume that ℋ is a complete Hall σ-set of G. We prove that (i) if G is soluble, r(H) ≤ r ∈ ℕ for all H ∈ ℋ, and every n-maximal subgroup of G (n > 1) is σ-quasinormal in G, then r(G) ≤ n+r − 2; (ii) if every member in ℋ is soluble and every n-minimal subgroup of G is σ-quasinormal, then G is soluble and rp(G) ≤ n + rp(H) − 1 for all H ∈ ℋ and odd p ∈ π(H). © Pleiades Publishing, Ltd. 2017 |
abstractGer |
Let G be a finite group and let σ = {σi|i ∈ I} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A1 × ⋯ × Ar, where Ai is a $${\sigma _{{i_j}}}$$-group for some ij = ij(Ai). A collection ℋ of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of ℋ is a Hall σi-subgroup of G for some i ∈ I and ℋ has exactly one Hall σi-subgroup of G for every i such that σi ∩ π(G) ≠ ø. A subgroup A of G is called σ-quasinormal or σ-permutable [1] in G if G possesses a complete Hall σ-set ℋ such that AHx = HxA for all H ∈ ℋ and x ∈ G. The symbol r(G) (rp(G)) denotes the rank (p-rank) of G. Assume that ℋ is a complete Hall σ-set of G. We prove that (i) if G is soluble, r(H) ≤ r ∈ ℕ for all H ∈ ℋ, and every n-maximal subgroup of G (n > 1) is σ-quasinormal in G, then r(G) ≤ n+r − 2; (ii) if every member in ℋ is soluble and every n-minimal subgroup of G is σ-quasinormal, then G is soluble and rp(G) ≤ n + rp(H) − 1 for all H ∈ ℋ and odd p ∈ π(H). © Pleiades Publishing, Ltd. 2017 |
abstract_unstemmed |
Let G be a finite group and let σ = {σi|i ∈ I} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A1 × ⋯ × Ar, where Ai is a $${\sigma _{{i_j}}}$$-group for some ij = ij(Ai). A collection ℋ of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of ℋ is a Hall σi-subgroup of G for some i ∈ I and ℋ has exactly one Hall σi-subgroup of G for every i such that σi ∩ π(G) ≠ ø. A subgroup A of G is called σ-quasinormal or σ-permutable [1] in G if G possesses a complete Hall σ-set ℋ such that AHx = HxA for all H ∈ ℋ and x ∈ G. The symbol r(G) (rp(G)) denotes the rank (p-rank) of G. Assume that ℋ is a complete Hall σ-set of G. We prove that (i) if G is soluble, r(H) ≤ r ∈ ℕ for all H ∈ ℋ, and every n-maximal subgroup of G (n > 1) is σ-quasinormal in G, then r(G) ≤ n+r − 2; (ii) if every member in ℋ is soluble and every n-minimal subgroup of G is σ-quasinormal, then G is soluble and rp(G) ≤ n + rp(H) − 1 for all H ∈ ℋ and odd p ∈ π(H). © Pleiades Publishing, Ltd. 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_2088 |
container_issue |
5 |
title_short |
Some notes on the rank of a finite soluble group |
url |
https://doi.org/10.1134/S0037446617050196 |
remote_bool |
false |
author2 |
Guo, W. Skiba, A. N. |
author2Str |
Guo, W. Skiba, A. N. |
ppnlink |
129553573 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0037446617050196 |
up_date |
2024-07-03T16:48:19.668Z |
_version_ |
1803577248625721344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203339137X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504044211.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0037446617050196</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203339137X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0037446617050196-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some notes on the rank of a finite soluble group</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let G be a finite group and let σ = {σi|i ∈ I} be some partition of the set ℙ of all primes. Then G is called σ-nilpotent if G = A1 × ⋯ × Ar, where Ai is a $${\sigma _{{i_j}}}$$-group for some ij = ij(Ai). A collection ℋ of subgroups of G is a complete Hall σ-set of G if each member ≠ 1 of ℋ is a Hall σi-subgroup of G for some i ∈ I and ℋ has exactly one Hall σi-subgroup of G for every i such that σi ∩ π(G) ≠ ø. A subgroup A of G is called σ-quasinormal or σ-permutable [1] in G if G possesses a complete Hall σ-set ℋ such that AHx = HxA for all H ∈ ℋ and x ∈ G. The symbol r(G) (rp(G)) denotes the rank (p-rank) of G. Assume that ℋ is a complete Hall σ-set of G. We prove that (i) if G is soluble, r(H) ≤ r ∈ ℕ for all H ∈ ℋ, and every n-maximal subgroup of G (n > 1) is σ-quasinormal in G, then r(G) ≤ n+r − 2; (ii) if every member in ℋ is soluble and every n-minimal subgroup of G is σ-quasinormal, then G is soluble and rp(G) ≤ n + rp(H) − 1 for all H ∈ ℋ and odd p ∈ π(H).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rank of a soluble group</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-quasinormal subgroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-maximal subgroup</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-soluble group</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skiba, A. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Siberian mathematical journal</subfield><subfield code="d">Pleiades Publishing, 1966</subfield><subfield code="g">58(2017), 5 vom: Sept., Seite 915-922</subfield><subfield code="w">(DE-627)129553573</subfield><subfield code="w">(DE-600)220062-4</subfield><subfield code="w">(DE-576)015009602</subfield><subfield code="x">0037-4466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:915-922</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0037446617050196</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="c">09</subfield><subfield code="h">915-922</subfield></datafield></record></collection>
|
score |
7.4018373 |