Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators
Abstract We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be...
Ausführliche Beschreibung
Autor*in: |
Shushpanov, M. P. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Inc. 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Siberian mathematical journal - Pleiades Publishing, 1966, 60(2019), 4 vom: Juli, Seite 734-740 |
---|---|
Übergeordnetes Werk: |
volume:60 ; year:2019 ; number:4 ; month:07 ; pages:734-740 |
Links: |
---|
DOI / URN: |
10.1134/S0037446619040190 |
---|
Katalog-ID: |
OLC2033393313 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033393313 | ||
003 | DE-627 | ||
005 | 20230504044226.0 | ||
007 | tu | ||
008 | 200819s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0037446619040190 |2 doi | |
035 | |a (DE-627)OLC2033393313 | ||
035 | |a (DE-He213)S0037446619040190-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Shushpanov, M. P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Inc. 2019 | ||
520 | |a Abstract We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be finite. | ||
650 | 4 | |a distributive element | |
650 | 4 | |a right modular element | |
650 | 4 | |a finite lattice | |
650 | 4 | |a infinite lattice | |
773 | 0 | 8 | |i Enthalten in |t Siberian mathematical journal |d Pleiades Publishing, 1966 |g 60(2019), 4 vom: Juli, Seite 734-740 |w (DE-627)129553573 |w (DE-600)220062-4 |w (DE-576)015009602 |x 0037-4466 |7 nnns |
773 | 1 | 8 | |g volume:60 |g year:2019 |g number:4 |g month:07 |g pages:734-740 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0037446619040190 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 60 |j 2019 |e 4 |c 07 |h 734-740 |
author_variant |
m p s mp mps |
---|---|
matchkey_str |
article:00374466:2019----::iieesnifntnso3eeaeltiewtdsrbtve |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1134/S0037446619040190 doi (DE-627)OLC2033393313 (DE-He213)S0037446619040190-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Shushpanov, M. P. verfasserin aut Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2019 Abstract We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be finite. distributive element right modular element finite lattice infinite lattice Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 60(2019), 4 vom: Juli, Seite 734-740 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:60 year:2019 number:4 month:07 pages:734-740 https://doi.org/10.1134/S0037446619040190 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 60 2019 4 07 734-740 |
spelling |
10.1134/S0037446619040190 doi (DE-627)OLC2033393313 (DE-He213)S0037446619040190-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Shushpanov, M. P. verfasserin aut Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2019 Abstract We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be finite. distributive element right modular element finite lattice infinite lattice Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 60(2019), 4 vom: Juli, Seite 734-740 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:60 year:2019 number:4 month:07 pages:734-740 https://doi.org/10.1134/S0037446619040190 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 60 2019 4 07 734-740 |
allfields_unstemmed |
10.1134/S0037446619040190 doi (DE-627)OLC2033393313 (DE-He213)S0037446619040190-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Shushpanov, M. P. verfasserin aut Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2019 Abstract We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be finite. distributive element right modular element finite lattice infinite lattice Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 60(2019), 4 vom: Juli, Seite 734-740 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:60 year:2019 number:4 month:07 pages:734-740 https://doi.org/10.1134/S0037446619040190 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 60 2019 4 07 734-740 |
allfieldsGer |
10.1134/S0037446619040190 doi (DE-627)OLC2033393313 (DE-He213)S0037446619040190-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Shushpanov, M. P. verfasserin aut Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2019 Abstract We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be finite. distributive element right modular element finite lattice infinite lattice Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 60(2019), 4 vom: Juli, Seite 734-740 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:60 year:2019 number:4 month:07 pages:734-740 https://doi.org/10.1134/S0037446619040190 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 60 2019 4 07 734-740 |
allfieldsSound |
10.1134/S0037446619040190 doi (DE-627)OLC2033393313 (DE-He213)S0037446619040190-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Shushpanov, M. P. verfasserin aut Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Pleiades Publishing, Inc. 2019 Abstract We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be finite. distributive element right modular element finite lattice infinite lattice Enthalten in Siberian mathematical journal Pleiades Publishing, 1966 60(2019), 4 vom: Juli, Seite 734-740 (DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 0037-4466 nnns volume:60 year:2019 number:4 month:07 pages:734-740 https://doi.org/10.1134/S0037446619040190 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 60 2019 4 07 734-740 |
language |
English |
source |
Enthalten in Siberian mathematical journal 60(2019), 4 vom: Juli, Seite 734-740 volume:60 year:2019 number:4 month:07 pages:734-740 |
sourceStr |
Enthalten in Siberian mathematical journal 60(2019), 4 vom: Juli, Seite 734-740 volume:60 year:2019 number:4 month:07 pages:734-740 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
distributive element right modular element finite lattice infinite lattice |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Siberian mathematical journal |
authorswithroles_txt_mv |
Shushpanov, M. P. @@aut@@ |
publishDateDaySort_date |
2019-07-01T00:00:00Z |
hierarchy_top_id |
129553573 |
dewey-sort |
3510 |
id |
OLC2033393313 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033393313</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504044226.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0037446619040190</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033393313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0037446619040190-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shushpanov, M. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Inc. 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be finite.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributive element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">right modular element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infinite lattice</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Siberian mathematical journal</subfield><subfield code="d">Pleiades Publishing, 1966</subfield><subfield code="g">60(2019), 4 vom: Juli, Seite 734-740</subfield><subfield code="w">(DE-627)129553573</subfield><subfield code="w">(DE-600)220062-4</subfield><subfield code="w">(DE-576)015009602</subfield><subfield code="x">0037-4466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:734-740</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0037446619040190</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">734-740</subfield></datafield></record></collection>
|
author |
Shushpanov, M. P. |
spellingShingle |
Shushpanov, M. P. ddc 510 ssgn 17,1 misc distributive element misc right modular element misc finite lattice misc infinite lattice Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators |
authorStr |
Shushpanov, M. P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129553573 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0037-4466 |
topic_title |
510 VZ 17,1 ssgn Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators distributive element right modular element finite lattice infinite lattice |
topic |
ddc 510 ssgn 17,1 misc distributive element misc right modular element misc finite lattice misc infinite lattice |
topic_unstemmed |
ddc 510 ssgn 17,1 misc distributive element misc right modular element misc finite lattice misc infinite lattice |
topic_browse |
ddc 510 ssgn 17,1 misc distributive element misc right modular element misc finite lattice misc infinite lattice |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Siberian mathematical journal |
hierarchy_parent_id |
129553573 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Siberian mathematical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129553573 (DE-600)220062-4 (DE-576)015009602 |
title |
Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators |
ctrlnum |
(DE-627)OLC2033393313 (DE-He213)S0037446619040190-p |
title_full |
Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators |
author_sort |
Shushpanov, M. P. |
journal |
Siberian mathematical journal |
journalStr |
Siberian mathematical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
734 |
author_browse |
Shushpanov, M. P. |
container_volume |
60 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Shushpanov, M. P. |
doi_str_mv |
10.1134/S0037446619040190 |
dewey-full |
510 |
title_sort |
finiteness and infiniteness of 3-generated lattices with distributive elements among generators |
title_auth |
Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators |
abstract |
Abstract We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be finite. © Pleiades Publishing, Inc. 2019 |
abstractGer |
Abstract We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be finite. © Pleiades Publishing, Inc. 2019 |
abstract_unstemmed |
Abstract We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be finite. © Pleiades Publishing, Inc. 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
4 |
title_short |
Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators |
url |
https://doi.org/10.1134/S0037446619040190 |
remote_bool |
false |
ppnlink |
129553573 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0037446619040190 |
up_date |
2024-07-03T16:48:42.289Z |
_version_ |
1803577272346607616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033393313</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504044226.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0037446619040190</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033393313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0037446619040190-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shushpanov, M. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finiteness and Infiniteness of 3-Generated Lattices with Distributive Elements Among Generators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Inc. 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider 3-generated lattices whose generators are distributive, dually distributive, right modular, dually right modular elements, or elements possessing a combination of these properties. For these lattices, we find all triples of generators that suffice for the generated lattice to be finite.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributive element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">right modular element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infinite lattice</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Siberian mathematical journal</subfield><subfield code="d">Pleiades Publishing, 1966</subfield><subfield code="g">60(2019), 4 vom: Juli, Seite 734-740</subfield><subfield code="w">(DE-627)129553573</subfield><subfield code="w">(DE-600)220062-4</subfield><subfield code="w">(DE-576)015009602</subfield><subfield code="x">0037-4466</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:734-740</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0037446619040190</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2019</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">734-740</subfield></datafield></record></collection>
|
score |
7.4013977 |