Computer Vision for the Solar Dynamics Observatory (SDO)
Abstract In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images fro...
Ausführliche Beschreibung
Autor*in: |
Martens, P. C. H. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Solar physics - Springer Netherlands, 1967, 275(2011), 1-2 vom: 07. Jan., Seite 79-113 |
---|---|
Übergeordnetes Werk: |
volume:275 ; year:2011 ; number:1-2 ; day:07 ; month:01 ; pages:79-113 |
Links: |
---|
DOI / URN: |
10.1007/s11207-010-9697-y |
---|
Katalog-ID: |
OLC2033610055 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033610055 | ||
003 | DE-627 | ||
005 | 20230504045901.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11207-010-9697-y |2 doi | |
035 | |a (DE-627)OLC2033610055 | ||
035 | |a (DE-He213)s11207-010-9697-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 16,12 |2 ssgn | ||
100 | 1 | |a Martens, P. C. H. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computer Vision for the Solar Dynamics Observatory (SDO) |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2011 | ||
520 | |a Abstract In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO). | ||
650 | 4 | |a Instrumentation and data management | |
650 | 4 | |a Solar Dynamics Observatory | |
700 | 1 | |a Attrill, G. D. R. |4 aut | |
700 | 1 | |a Davey, A. R. |4 aut | |
700 | 1 | |a Engell, A. |4 aut | |
700 | 1 | |a Farid, S. |4 aut | |
700 | 1 | |a Grigis, P. C. |4 aut | |
700 | 1 | |a Kasper, J. |4 aut | |
700 | 1 | |a Korreck, K. |4 aut | |
700 | 1 | |a Saar, S. H. |4 aut | |
700 | 1 | |a Savcheva, A. |4 aut | |
700 | 1 | |a Su, Y. |4 aut | |
700 | 1 | |a Testa, P. |4 aut | |
700 | 1 | |a Wills-Davey, M. |4 aut | |
700 | 1 | |a Bernasconi, P. N. |4 aut | |
700 | 1 | |a Raouafi, N.-E. |4 aut | |
700 | 1 | |a Delouille, V. A. |4 aut | |
700 | 1 | |a Hochedez, J. F. |4 aut | |
700 | 1 | |a Cirtain, J. W. |4 aut | |
700 | 1 | |a DeForest, C. E. |4 aut | |
700 | 1 | |a Angryk, R. A. |4 aut | |
700 | 1 | |a De Moortel, I. |4 aut | |
700 | 1 | |a Wiegelmann, T. |4 aut | |
700 | 1 | |a Georgoulis, M. K. |4 aut | |
700 | 1 | |a McAteer, R. T. J. |4 aut | |
700 | 1 | |a Timmons, R. P. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Solar physics |d Springer Netherlands, 1967 |g 275(2011), 1-2 vom: 07. Jan., Seite 79-113 |w (DE-627)129856010 |w (DE-600)281593-X |w (DE-576)015160033 |x 0038-0938 |7 nnns |
773 | 1 | 8 | |g volume:275 |g year:2011 |g number:1-2 |g day:07 |g month:01 |g pages:79-113 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11207-010-9697-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 275 |j 2011 |e 1-2 |b 07 |c 01 |h 79-113 |
author_variant |
p c h m pch pchm g d r a gdr gdra a r d ar ard a e ae s f sf p c g pc pcg j k jk k k kk s h s sh shs a s as y s ys p t pt m w d mwd p n b pn pnb n e r ner v a d va vad j f h jf jfh j w c jw jwc c e d ce ced r a a ra raa m i d mi mid t w tw m k g mk mkg r t j m rtj rtjm r p t rp rpt |
---|---|
matchkey_str |
article:00380938:2011----::optriinoteoadnmc |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s11207-010-9697-y doi (DE-627)OLC2033610055 (DE-He213)s11207-010-9697-y-p DE-627 ger DE-627 rakwb eng 530 VZ 16,12 ssgn Martens, P. C. H. verfasserin aut Computer Vision for the Solar Dynamics Observatory (SDO) 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2011 Abstract In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO). Instrumentation and data management Solar Dynamics Observatory Attrill, G. D. R. aut Davey, A. R. aut Engell, A. aut Farid, S. aut Grigis, P. C. aut Kasper, J. aut Korreck, K. aut Saar, S. H. aut Savcheva, A. aut Su, Y. aut Testa, P. aut Wills-Davey, M. aut Bernasconi, P. N. aut Raouafi, N.-E. aut Delouille, V. A. aut Hochedez, J. F. aut Cirtain, J. W. aut DeForest, C. E. aut Angryk, R. A. aut De Moortel, I. aut Wiegelmann, T. aut Georgoulis, M. K. aut McAteer, R. T. J. aut Timmons, R. P. aut Enthalten in Solar physics Springer Netherlands, 1967 275(2011), 1-2 vom: 07. Jan., Seite 79-113 (DE-627)129856010 (DE-600)281593-X (DE-576)015160033 0038-0938 nnns volume:275 year:2011 number:1-2 day:07 month:01 pages:79-113 https://doi.org/10.1007/s11207-010-9697-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 AR 275 2011 1-2 07 01 79-113 |
spelling |
10.1007/s11207-010-9697-y doi (DE-627)OLC2033610055 (DE-He213)s11207-010-9697-y-p DE-627 ger DE-627 rakwb eng 530 VZ 16,12 ssgn Martens, P. C. H. verfasserin aut Computer Vision for the Solar Dynamics Observatory (SDO) 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2011 Abstract In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO). Instrumentation and data management Solar Dynamics Observatory Attrill, G. D. R. aut Davey, A. R. aut Engell, A. aut Farid, S. aut Grigis, P. C. aut Kasper, J. aut Korreck, K. aut Saar, S. H. aut Savcheva, A. aut Su, Y. aut Testa, P. aut Wills-Davey, M. aut Bernasconi, P. N. aut Raouafi, N.-E. aut Delouille, V. A. aut Hochedez, J. F. aut Cirtain, J. W. aut DeForest, C. E. aut Angryk, R. A. aut De Moortel, I. aut Wiegelmann, T. aut Georgoulis, M. K. aut McAteer, R. T. J. aut Timmons, R. P. aut Enthalten in Solar physics Springer Netherlands, 1967 275(2011), 1-2 vom: 07. Jan., Seite 79-113 (DE-627)129856010 (DE-600)281593-X (DE-576)015160033 0038-0938 nnns volume:275 year:2011 number:1-2 day:07 month:01 pages:79-113 https://doi.org/10.1007/s11207-010-9697-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 AR 275 2011 1-2 07 01 79-113 |
allfields_unstemmed |
10.1007/s11207-010-9697-y doi (DE-627)OLC2033610055 (DE-He213)s11207-010-9697-y-p DE-627 ger DE-627 rakwb eng 530 VZ 16,12 ssgn Martens, P. C. H. verfasserin aut Computer Vision for the Solar Dynamics Observatory (SDO) 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2011 Abstract In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO). Instrumentation and data management Solar Dynamics Observatory Attrill, G. D. R. aut Davey, A. R. aut Engell, A. aut Farid, S. aut Grigis, P. C. aut Kasper, J. aut Korreck, K. aut Saar, S. H. aut Savcheva, A. aut Su, Y. aut Testa, P. aut Wills-Davey, M. aut Bernasconi, P. N. aut Raouafi, N.-E. aut Delouille, V. A. aut Hochedez, J. F. aut Cirtain, J. W. aut DeForest, C. E. aut Angryk, R. A. aut De Moortel, I. aut Wiegelmann, T. aut Georgoulis, M. K. aut McAteer, R. T. J. aut Timmons, R. P. aut Enthalten in Solar physics Springer Netherlands, 1967 275(2011), 1-2 vom: 07. Jan., Seite 79-113 (DE-627)129856010 (DE-600)281593-X (DE-576)015160033 0038-0938 nnns volume:275 year:2011 number:1-2 day:07 month:01 pages:79-113 https://doi.org/10.1007/s11207-010-9697-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 AR 275 2011 1-2 07 01 79-113 |
allfieldsGer |
10.1007/s11207-010-9697-y doi (DE-627)OLC2033610055 (DE-He213)s11207-010-9697-y-p DE-627 ger DE-627 rakwb eng 530 VZ 16,12 ssgn Martens, P. C. H. verfasserin aut Computer Vision for the Solar Dynamics Observatory (SDO) 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2011 Abstract In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO). Instrumentation and data management Solar Dynamics Observatory Attrill, G. D. R. aut Davey, A. R. aut Engell, A. aut Farid, S. aut Grigis, P. C. aut Kasper, J. aut Korreck, K. aut Saar, S. H. aut Savcheva, A. aut Su, Y. aut Testa, P. aut Wills-Davey, M. aut Bernasconi, P. N. aut Raouafi, N.-E. aut Delouille, V. A. aut Hochedez, J. F. aut Cirtain, J. W. aut DeForest, C. E. aut Angryk, R. A. aut De Moortel, I. aut Wiegelmann, T. aut Georgoulis, M. K. aut McAteer, R. T. J. aut Timmons, R. P. aut Enthalten in Solar physics Springer Netherlands, 1967 275(2011), 1-2 vom: 07. Jan., Seite 79-113 (DE-627)129856010 (DE-600)281593-X (DE-576)015160033 0038-0938 nnns volume:275 year:2011 number:1-2 day:07 month:01 pages:79-113 https://doi.org/10.1007/s11207-010-9697-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 AR 275 2011 1-2 07 01 79-113 |
allfieldsSound |
10.1007/s11207-010-9697-y doi (DE-627)OLC2033610055 (DE-He213)s11207-010-9697-y-p DE-627 ger DE-627 rakwb eng 530 VZ 16,12 ssgn Martens, P. C. H. verfasserin aut Computer Vision for the Solar Dynamics Observatory (SDO) 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2011 Abstract In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO). Instrumentation and data management Solar Dynamics Observatory Attrill, G. D. R. aut Davey, A. R. aut Engell, A. aut Farid, S. aut Grigis, P. C. aut Kasper, J. aut Korreck, K. aut Saar, S. H. aut Savcheva, A. aut Su, Y. aut Testa, P. aut Wills-Davey, M. aut Bernasconi, P. N. aut Raouafi, N.-E. aut Delouille, V. A. aut Hochedez, J. F. aut Cirtain, J. W. aut DeForest, C. E. aut Angryk, R. A. aut De Moortel, I. aut Wiegelmann, T. aut Georgoulis, M. K. aut McAteer, R. T. J. aut Timmons, R. P. aut Enthalten in Solar physics Springer Netherlands, 1967 275(2011), 1-2 vom: 07. Jan., Seite 79-113 (DE-627)129856010 (DE-600)281593-X (DE-576)015160033 0038-0938 nnns volume:275 year:2011 number:1-2 day:07 month:01 pages:79-113 https://doi.org/10.1007/s11207-010-9697-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 AR 275 2011 1-2 07 01 79-113 |
language |
English |
source |
Enthalten in Solar physics 275(2011), 1-2 vom: 07. Jan., Seite 79-113 volume:275 year:2011 number:1-2 day:07 month:01 pages:79-113 |
sourceStr |
Enthalten in Solar physics 275(2011), 1-2 vom: 07. Jan., Seite 79-113 volume:275 year:2011 number:1-2 day:07 month:01 pages:79-113 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Instrumentation and data management Solar Dynamics Observatory |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Solar physics |
authorswithroles_txt_mv |
Martens, P. C. H. @@aut@@ Attrill, G. D. R. @@aut@@ Davey, A. R. @@aut@@ Engell, A. @@aut@@ Farid, S. @@aut@@ Grigis, P. C. @@aut@@ Kasper, J. @@aut@@ Korreck, K. @@aut@@ Saar, S. H. @@aut@@ Savcheva, A. @@aut@@ Su, Y. @@aut@@ Testa, P. @@aut@@ Wills-Davey, M. @@aut@@ Bernasconi, P. N. @@aut@@ Raouafi, N.-E. @@aut@@ Delouille, V. A. @@aut@@ Hochedez, J. F. @@aut@@ Cirtain, J. W. @@aut@@ DeForest, C. E. @@aut@@ Angryk, R. A. @@aut@@ De Moortel, I. @@aut@@ Wiegelmann, T. @@aut@@ Georgoulis, M. K. @@aut@@ McAteer, R. T. J. @@aut@@ Timmons, R. P. @@aut@@ |
publishDateDaySort_date |
2011-01-07T00:00:00Z |
hierarchy_top_id |
129856010 |
dewey-sort |
3530 |
id |
OLC2033610055 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033610055</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504045901.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11207-010-9697-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033610055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11207-010-9697-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martens, P. C. H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computer Vision for the Solar Dynamics Observatory (SDO)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrumentation and data management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar Dynamics Observatory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Attrill, G. D. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davey, A. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Engell, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Farid, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grigis, P. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kasper, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korreck, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saar, S. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savcheva, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Testa, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wills-Davey, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bernasconi, P. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raouafi, N.-E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Delouille, V. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hochedez, J. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cirtain, J. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DeForest, C. E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angryk, R. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Moortel, I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiegelmann, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Georgoulis, M. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McAteer, R. T. J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Timmons, R. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar physics</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">275(2011), 1-2 vom: 07. Jan., Seite 79-113</subfield><subfield code="w">(DE-627)129856010</subfield><subfield code="w">(DE-600)281593-X</subfield><subfield code="w">(DE-576)015160033</subfield><subfield code="x">0038-0938</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:275</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:07</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:79-113</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11207-010-9697-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">275</subfield><subfield code="j">2011</subfield><subfield code="e">1-2</subfield><subfield code="b">07</subfield><subfield code="c">01</subfield><subfield code="h">79-113</subfield></datafield></record></collection>
|
author |
Martens, P. C. H. |
spellingShingle |
Martens, P. C. H. ddc 530 ssgn 16,12 misc Instrumentation and data management misc Solar Dynamics Observatory Computer Vision for the Solar Dynamics Observatory (SDO) |
authorStr |
Martens, P. C. H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129856010 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0038-0938 |
topic_title |
530 VZ 16,12 ssgn Computer Vision for the Solar Dynamics Observatory (SDO) Instrumentation and data management Solar Dynamics Observatory |
topic |
ddc 530 ssgn 16,12 misc Instrumentation and data management misc Solar Dynamics Observatory |
topic_unstemmed |
ddc 530 ssgn 16,12 misc Instrumentation and data management misc Solar Dynamics Observatory |
topic_browse |
ddc 530 ssgn 16,12 misc Instrumentation and data management misc Solar Dynamics Observatory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Solar physics |
hierarchy_parent_id |
129856010 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Solar physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129856010 (DE-600)281593-X (DE-576)015160033 |
title |
Computer Vision for the Solar Dynamics Observatory (SDO) |
ctrlnum |
(DE-627)OLC2033610055 (DE-He213)s11207-010-9697-y-p |
title_full |
Computer Vision for the Solar Dynamics Observatory (SDO) |
author_sort |
Martens, P. C. H. |
journal |
Solar physics |
journalStr |
Solar physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
79 |
author_browse |
Martens, P. C. H. Attrill, G. D. R. Davey, A. R. Engell, A. Farid, S. Grigis, P. C. Kasper, J. Korreck, K. Saar, S. H. Savcheva, A. Su, Y. Testa, P. Wills-Davey, M. Bernasconi, P. N. Raouafi, N.-E. Delouille, V. A. Hochedez, J. F. Cirtain, J. W. DeForest, C. E. Angryk, R. A. De Moortel, I. Wiegelmann, T. Georgoulis, M. K. McAteer, R. T. J. Timmons, R. P. |
container_volume |
275 |
class |
530 VZ 16,12 ssgn |
format_se |
Aufsätze |
author-letter |
Martens, P. C. H. |
doi_str_mv |
10.1007/s11207-010-9697-y |
dewey-full |
530 |
title_sort |
computer vision for the solar dynamics observatory (sdo) |
title_auth |
Computer Vision for the Solar Dynamics Observatory (SDO) |
abstract |
Abstract In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO). © The Author(s) 2011 |
abstractGer |
Abstract In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO). © The Author(s) 2011 |
abstract_unstemmed |
Abstract In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO). © The Author(s) 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-AST SSG-OPC-AST GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 |
container_issue |
1-2 |
title_short |
Computer Vision for the Solar Dynamics Observatory (SDO) |
url |
https://doi.org/10.1007/s11207-010-9697-y |
remote_bool |
false |
author2 |
Attrill, G. D. R. Davey, A. R. Engell, A. Farid, S. Grigis, P. C. Kasper, J. Korreck, K. Saar, S. H. Savcheva, A. Su, Y. Testa, P. Wills-Davey, M. Bernasconi, P. N. Raouafi, N.-E. Delouille, V. A. Hochedez, J. F. Cirtain, J. W. DeForest, C. E. Angryk, R. A. De Moortel, I. Wiegelmann, T. Georgoulis, M. K. McAteer, R. T. J. Timmons, R. P. |
author2Str |
Attrill, G. D. R. Davey, A. R. Engell, A. Farid, S. Grigis, P. C. Kasper, J. Korreck, K. Saar, S. H. Savcheva, A. Su, Y. Testa, P. Wills-Davey, M. Bernasconi, P. N. Raouafi, N.-E. Delouille, V. A. Hochedez, J. F. Cirtain, J. W. DeForest, C. E. Angryk, R. A. De Moortel, I. Wiegelmann, T. Georgoulis, M. K. McAteer, R. T. J. Timmons, R. P. |
ppnlink |
129856010 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11207-010-9697-y |
up_date |
2024-07-03T17:41:25.139Z |
_version_ |
1803580588875055104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033610055</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504045901.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11207-010-9697-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033610055</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11207-010-9697-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martens, P. C. H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computer Vision for the Solar Dynamics Observatory (SDO)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre-Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrumentation and data management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar Dynamics Observatory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Attrill, G. D. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davey, A. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Engell, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Farid, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grigis, P. C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kasper, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korreck, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saar, S. H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savcheva, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Testa, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wills-Davey, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bernasconi, P. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raouafi, N.-E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Delouille, V. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hochedez, J. F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cirtain, J. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DeForest, C. E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angryk, R. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Moortel, I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiegelmann, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Georgoulis, M. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McAteer, R. T. J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Timmons, R. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar physics</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">275(2011), 1-2 vom: 07. Jan., Seite 79-113</subfield><subfield code="w">(DE-627)129856010</subfield><subfield code="w">(DE-600)281593-X</subfield><subfield code="w">(DE-576)015160033</subfield><subfield code="x">0038-0938</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:275</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:07</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:79-113</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11207-010-9697-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">275</subfield><subfield code="j">2011</subfield><subfield code="e">1-2</subfield><subfield code="b">07</subfield><subfield code="c">01</subfield><subfield code="h">79-113</subfield></datafield></record></collection>
|
score |
7.401602 |