The consequences of micropulsations on geomagnetically trapped particles
Abstract Non-adiabatic radiation belt dynamics is largely controlled by interactions between geomagnetically trapped particles and various modes of plasma turbulence. Long period electric field fluctuations act as a major source mechanism for the inner zone through the process of inward radial diffu...
Ausführliche Beschreibung
Autor*in: |
Thorne, Richard Mansergh [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1974 |
---|
Schlagwörter: |
---|
Anmerkung: |
© D. Reidel Publishing Company 1974 |
---|
Übergeordnetes Werk: |
Enthalten in: Space science reviews - Kluwer Academic Publishers, 1962, 16(1974), 3 vom: Sept., Seite 443-458 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:1974 ; number:3 ; month:09 ; pages:443-458 |
Links: |
---|
DOI / URN: |
10.1007/BF00171568 |
---|
Katalog-ID: |
OLC2033662187 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033662187 | ||
003 | DE-627 | ||
005 | 20230504050505.0 | ||
007 | tu | ||
008 | 200819s1974 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00171568 |2 doi | |
035 | |a (DE-627)OLC2033662187 | ||
035 | |a (DE-He213)BF00171568-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 16,12 |2 ssgn | ||
100 | 1 | |a Thorne, Richard Mansergh |e verfasserin |4 aut | |
245 | 1 | 0 | |a The consequences of micropulsations on geomagnetically trapped particles |
264 | 1 | |c 1974 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © D. Reidel Publishing Company 1974 | ||
520 | |a Abstract Non-adiabatic radiation belt dynamics is largely controlled by interactions between geomagnetically trapped particles and various modes of plasma turbulence. Long period electric field fluctuations act as a major source mechanism for the inner zone through the process of inward radial diffusion of particles injected into the convection dominated outer zone. Higher frequency turbulence provides a major loss mechanism by pitch-angle scattering into the atmospheric loss cone. The wave particle interactions may take the form of self induced instabilities or parasitic scattering. Examples of each will be given in this review. | ||
650 | 4 | |a Radial Diffusion | |
650 | 4 | |a Outer Zone | |
650 | 4 | |a Radiation Belt | |
650 | 4 | |a Source Mechanism | |
650 | 4 | |a Field Fluctuation | |
773 | 0 | 8 | |i Enthalten in |t Space science reviews |d Kluwer Academic Publishers, 1962 |g 16(1974), 3 vom: Sept., Seite 443-458 |w (DE-627)129086606 |w (DE-600)4860-4 |w (DE-576)014420724 |x 0038-6308 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:1974 |g number:3 |g month:09 |g pages:443-458 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00171568 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2286 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4314 | ||
951 | |a AR | ||
952 | |d 16 |j 1974 |e 3 |c 09 |h 443-458 |
author_variant |
r m t rm rmt |
---|---|
matchkey_str |
article:00386308:1974----::hcneuneomcoustosnemgeial |
hierarchy_sort_str |
1974 |
publishDate |
1974 |
allfields |
10.1007/BF00171568 doi (DE-627)OLC2033662187 (DE-He213)BF00171568-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Thorne, Richard Mansergh verfasserin aut The consequences of micropulsations on geomagnetically trapped particles 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © D. Reidel Publishing Company 1974 Abstract Non-adiabatic radiation belt dynamics is largely controlled by interactions between geomagnetically trapped particles and various modes of plasma turbulence. Long period electric field fluctuations act as a major source mechanism for the inner zone through the process of inward radial diffusion of particles injected into the convection dominated outer zone. Higher frequency turbulence provides a major loss mechanism by pitch-angle scattering into the atmospheric loss cone. The wave particle interactions may take the form of self induced instabilities or parasitic scattering. Examples of each will be given in this review. Radial Diffusion Outer Zone Radiation Belt Source Mechanism Field Fluctuation Enthalten in Space science reviews Kluwer Academic Publishers, 1962 16(1974), 3 vom: Sept., Seite 443-458 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:16 year:1974 number:3 month:09 pages:443-458 https://doi.org/10.1007/BF00171568 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4314 AR 16 1974 3 09 443-458 |
spelling |
10.1007/BF00171568 doi (DE-627)OLC2033662187 (DE-He213)BF00171568-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Thorne, Richard Mansergh verfasserin aut The consequences of micropulsations on geomagnetically trapped particles 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © D. Reidel Publishing Company 1974 Abstract Non-adiabatic radiation belt dynamics is largely controlled by interactions between geomagnetically trapped particles and various modes of plasma turbulence. Long period electric field fluctuations act as a major source mechanism for the inner zone through the process of inward radial diffusion of particles injected into the convection dominated outer zone. Higher frequency turbulence provides a major loss mechanism by pitch-angle scattering into the atmospheric loss cone. The wave particle interactions may take the form of self induced instabilities or parasitic scattering. Examples of each will be given in this review. Radial Diffusion Outer Zone Radiation Belt Source Mechanism Field Fluctuation Enthalten in Space science reviews Kluwer Academic Publishers, 1962 16(1974), 3 vom: Sept., Seite 443-458 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:16 year:1974 number:3 month:09 pages:443-458 https://doi.org/10.1007/BF00171568 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4314 AR 16 1974 3 09 443-458 |
allfields_unstemmed |
10.1007/BF00171568 doi (DE-627)OLC2033662187 (DE-He213)BF00171568-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Thorne, Richard Mansergh verfasserin aut The consequences of micropulsations on geomagnetically trapped particles 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © D. Reidel Publishing Company 1974 Abstract Non-adiabatic radiation belt dynamics is largely controlled by interactions between geomagnetically trapped particles and various modes of plasma turbulence. Long period electric field fluctuations act as a major source mechanism for the inner zone through the process of inward radial diffusion of particles injected into the convection dominated outer zone. Higher frequency turbulence provides a major loss mechanism by pitch-angle scattering into the atmospheric loss cone. The wave particle interactions may take the form of self induced instabilities or parasitic scattering. Examples of each will be given in this review. Radial Diffusion Outer Zone Radiation Belt Source Mechanism Field Fluctuation Enthalten in Space science reviews Kluwer Academic Publishers, 1962 16(1974), 3 vom: Sept., Seite 443-458 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:16 year:1974 number:3 month:09 pages:443-458 https://doi.org/10.1007/BF00171568 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4314 AR 16 1974 3 09 443-458 |
allfieldsGer |
10.1007/BF00171568 doi (DE-627)OLC2033662187 (DE-He213)BF00171568-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Thorne, Richard Mansergh verfasserin aut The consequences of micropulsations on geomagnetically trapped particles 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © D. Reidel Publishing Company 1974 Abstract Non-adiabatic radiation belt dynamics is largely controlled by interactions between geomagnetically trapped particles and various modes of plasma turbulence. Long period electric field fluctuations act as a major source mechanism for the inner zone through the process of inward radial diffusion of particles injected into the convection dominated outer zone. Higher frequency turbulence provides a major loss mechanism by pitch-angle scattering into the atmospheric loss cone. The wave particle interactions may take the form of self induced instabilities or parasitic scattering. Examples of each will be given in this review. Radial Diffusion Outer Zone Radiation Belt Source Mechanism Field Fluctuation Enthalten in Space science reviews Kluwer Academic Publishers, 1962 16(1974), 3 vom: Sept., Seite 443-458 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:16 year:1974 number:3 month:09 pages:443-458 https://doi.org/10.1007/BF00171568 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4314 AR 16 1974 3 09 443-458 |
allfieldsSound |
10.1007/BF00171568 doi (DE-627)OLC2033662187 (DE-He213)BF00171568-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Thorne, Richard Mansergh verfasserin aut The consequences of micropulsations on geomagnetically trapped particles 1974 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © D. Reidel Publishing Company 1974 Abstract Non-adiabatic radiation belt dynamics is largely controlled by interactions between geomagnetically trapped particles and various modes of plasma turbulence. Long period electric field fluctuations act as a major source mechanism for the inner zone through the process of inward radial diffusion of particles injected into the convection dominated outer zone. Higher frequency turbulence provides a major loss mechanism by pitch-angle scattering into the atmospheric loss cone. The wave particle interactions may take the form of self induced instabilities or parasitic scattering. Examples of each will be given in this review. Radial Diffusion Outer Zone Radiation Belt Source Mechanism Field Fluctuation Enthalten in Space science reviews Kluwer Academic Publishers, 1962 16(1974), 3 vom: Sept., Seite 443-458 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:16 year:1974 number:3 month:09 pages:443-458 https://doi.org/10.1007/BF00171568 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4314 AR 16 1974 3 09 443-458 |
language |
English |
source |
Enthalten in Space science reviews 16(1974), 3 vom: Sept., Seite 443-458 volume:16 year:1974 number:3 month:09 pages:443-458 |
sourceStr |
Enthalten in Space science reviews 16(1974), 3 vom: Sept., Seite 443-458 volume:16 year:1974 number:3 month:09 pages:443-458 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Radial Diffusion Outer Zone Radiation Belt Source Mechanism Field Fluctuation |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Space science reviews |
authorswithroles_txt_mv |
Thorne, Richard Mansergh @@aut@@ |
publishDateDaySort_date |
1974-09-01T00:00:00Z |
hierarchy_top_id |
129086606 |
dewey-sort |
3600 |
id |
OLC2033662187 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033662187</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504050505.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1974 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00171568</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033662187</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00171568-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thorne, Richard Mansergh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The consequences of micropulsations on geomagnetically trapped particles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1974</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© D. Reidel Publishing Company 1974</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Non-adiabatic radiation belt dynamics is largely controlled by interactions between geomagnetically trapped particles and various modes of plasma turbulence. Long period electric field fluctuations act as a major source mechanism for the inner zone through the process of inward radial diffusion of particles injected into the convection dominated outer zone. Higher frequency turbulence provides a major loss mechanism by pitch-angle scattering into the atmospheric loss cone. The wave particle interactions may take the form of self induced instabilities or parasitic scattering. Examples of each will be given in this review.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial Diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Outer Zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation Belt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Source Mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Fluctuation</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Space science reviews</subfield><subfield code="d">Kluwer Academic Publishers, 1962</subfield><subfield code="g">16(1974), 3 vom: Sept., Seite 443-458</subfield><subfield code="w">(DE-627)129086606</subfield><subfield code="w">(DE-600)4860-4</subfield><subfield code="w">(DE-576)014420724</subfield><subfield code="x">0038-6308</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:1974</subfield><subfield code="g">number:3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:443-458</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00171568</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">1974</subfield><subfield code="e">3</subfield><subfield code="c">09</subfield><subfield code="h">443-458</subfield></datafield></record></collection>
|
author |
Thorne, Richard Mansergh |
spellingShingle |
Thorne, Richard Mansergh ddc 600 ssgn 16,12 misc Radial Diffusion misc Outer Zone misc Radiation Belt misc Source Mechanism misc Field Fluctuation The consequences of micropulsations on geomagnetically trapped particles |
authorStr |
Thorne, Richard Mansergh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129086606 |
format |
Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0038-6308 |
topic_title |
600 VZ 16,12 ssgn The consequences of micropulsations on geomagnetically trapped particles Radial Diffusion Outer Zone Radiation Belt Source Mechanism Field Fluctuation |
topic |
ddc 600 ssgn 16,12 misc Radial Diffusion misc Outer Zone misc Radiation Belt misc Source Mechanism misc Field Fluctuation |
topic_unstemmed |
ddc 600 ssgn 16,12 misc Radial Diffusion misc Outer Zone misc Radiation Belt misc Source Mechanism misc Field Fluctuation |
topic_browse |
ddc 600 ssgn 16,12 misc Radial Diffusion misc Outer Zone misc Radiation Belt misc Source Mechanism misc Field Fluctuation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Space science reviews |
hierarchy_parent_id |
129086606 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Space science reviews |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 |
title |
The consequences of micropulsations on geomagnetically trapped particles |
ctrlnum |
(DE-627)OLC2033662187 (DE-He213)BF00171568-p |
title_full |
The consequences of micropulsations on geomagnetically trapped particles |
author_sort |
Thorne, Richard Mansergh |
journal |
Space science reviews |
journalStr |
Space science reviews |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
1974 |
contenttype_str_mv |
txt |
container_start_page |
443 |
author_browse |
Thorne, Richard Mansergh |
container_volume |
16 |
class |
600 VZ 16,12 ssgn |
format_se |
Aufsätze |
author-letter |
Thorne, Richard Mansergh |
doi_str_mv |
10.1007/BF00171568 |
dewey-full |
600 |
title_sort |
the consequences of micropulsations on geomagnetically trapped particles |
title_auth |
The consequences of micropulsations on geomagnetically trapped particles |
abstract |
Abstract Non-adiabatic radiation belt dynamics is largely controlled by interactions between geomagnetically trapped particles and various modes of plasma turbulence. Long period electric field fluctuations act as a major source mechanism for the inner zone through the process of inward radial diffusion of particles injected into the convection dominated outer zone. Higher frequency turbulence provides a major loss mechanism by pitch-angle scattering into the atmospheric loss cone. The wave particle interactions may take the form of self induced instabilities or parasitic scattering. Examples of each will be given in this review. © D. Reidel Publishing Company 1974 |
abstractGer |
Abstract Non-adiabatic radiation belt dynamics is largely controlled by interactions between geomagnetically trapped particles and various modes of plasma turbulence. Long period electric field fluctuations act as a major source mechanism for the inner zone through the process of inward radial diffusion of particles injected into the convection dominated outer zone. Higher frequency turbulence provides a major loss mechanism by pitch-angle scattering into the atmospheric loss cone. The wave particle interactions may take the form of self induced instabilities or parasitic scattering. Examples of each will be given in this review. © D. Reidel Publishing Company 1974 |
abstract_unstemmed |
Abstract Non-adiabatic radiation belt dynamics is largely controlled by interactions between geomagnetically trapped particles and various modes of plasma turbulence. Long period electric field fluctuations act as a major source mechanism for the inner zone through the process of inward radial diffusion of particles injected into the convection dominated outer zone. Higher frequency turbulence provides a major loss mechanism by pitch-angle scattering into the atmospheric loss cone. The wave particle interactions may take the form of self induced instabilities or parasitic scattering. Examples of each will be given in this review. © D. Reidel Publishing Company 1974 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_150 GBV_ILN_2002 GBV_ILN_2006 GBV_ILN_2015 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4314 |
container_issue |
3 |
title_short |
The consequences of micropulsations on geomagnetically trapped particles |
url |
https://doi.org/10.1007/BF00171568 |
remote_bool |
false |
ppnlink |
129086606 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00171568 |
up_date |
2024-07-03T17:54:26.193Z |
_version_ |
1803581407829688321 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033662187</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504050505.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1974 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00171568</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033662187</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00171568-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thorne, Richard Mansergh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The consequences of micropulsations on geomagnetically trapped particles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1974</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© D. Reidel Publishing Company 1974</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Non-adiabatic radiation belt dynamics is largely controlled by interactions between geomagnetically trapped particles and various modes of plasma turbulence. Long period electric field fluctuations act as a major source mechanism for the inner zone through the process of inward radial diffusion of particles injected into the convection dominated outer zone. Higher frequency turbulence provides a major loss mechanism by pitch-angle scattering into the atmospheric loss cone. The wave particle interactions may take the form of self induced instabilities or parasitic scattering. Examples of each will be given in this review.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial Diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Outer Zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation Belt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Source Mechanism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Fluctuation</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Space science reviews</subfield><subfield code="d">Kluwer Academic Publishers, 1962</subfield><subfield code="g">16(1974), 3 vom: Sept., Seite 443-458</subfield><subfield code="w">(DE-627)129086606</subfield><subfield code="w">(DE-600)4860-4</subfield><subfield code="w">(DE-576)014420724</subfield><subfield code="x">0038-6308</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:1974</subfield><subfield code="g">number:3</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:443-458</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00171568</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">1974</subfield><subfield code="e">3</subfield><subfield code="c">09</subfield><subfield code="h">443-458</subfield></datafield></record></collection>
|
score |
7.401394 |