Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments
Abstract Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the $ C...
Ausführliche Beschreibung
Autor*in: |
Niles, Paul B. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© US Government 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Space science reviews - Springer Netherlands, 1962, 174(2012), 1-4 vom: 25. Okt., Seite 301-328 |
---|---|
Übergeordnetes Werk: |
volume:174 ; year:2012 ; number:1-4 ; day:25 ; month:10 ; pages:301-328 |
Links: |
---|
DOI / URN: |
10.1007/s11214-012-9940-y |
---|
Katalog-ID: |
OLC2033699358 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033699358 | ||
003 | DE-627 | ||
005 | 20230504050815.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11214-012-9940-y |2 doi | |
035 | |a (DE-627)OLC2033699358 | ||
035 | |a (DE-He213)s11214-012-9940-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 16,12 |2 ssgn | ||
100 | 1 | |a Niles, Paul B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © US Government 2012 | ||
520 | |a Abstract Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the $ CO_{2} $ budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present. | ||
650 | 4 | |a Mars | |
650 | 4 | |a Carbonate | |
650 | 4 | |a Climate | |
650 | 4 | |a CO | |
650 | 4 | |a Water | |
650 | 4 | |a Meteorites | |
650 | 4 | |a Spectroscopy | |
650 | 4 | |a Acidity | |
650 | 4 | |a Atmosphere | |
700 | 1 | |a Catling, David C. |4 aut | |
700 | 1 | |a Berger, Gilles |4 aut | |
700 | 1 | |a Chassefière, Eric |4 aut | |
700 | 1 | |a Ehlmann, Bethany L. |4 aut | |
700 | 1 | |a Michalski, Joseph R. |4 aut | |
700 | 1 | |a Morris, Richard |4 aut | |
700 | 1 | |a Ruff, Steven W. |4 aut | |
700 | 1 | |a Sutter, Brad |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Space science reviews |d Springer Netherlands, 1962 |g 174(2012), 1-4 vom: 25. Okt., Seite 301-328 |w (DE-627)129086606 |w (DE-600)4860-4 |w (DE-576)014420724 |x 0038-6308 |7 nnns |
773 | 1 | 8 | |g volume:174 |g year:2012 |g number:1-4 |g day:25 |g month:10 |g pages:301-328 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11214-012-9940-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 174 |j 2012 |e 1-4 |b 25 |c 10 |h 301-328 |
author_variant |
p b n pb pbn d c c dc dcc g b gb e c ec b l e bl ble j r m jr jrm r m rm s w r sw swr b s bs |
---|---|
matchkey_str |
article:00386308:2012----::eceityfabntsnasmlctosociaeitradau |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s11214-012-9940-y doi (DE-627)OLC2033699358 (DE-He213)s11214-012-9940-y-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Niles, Paul B. verfasserin aut Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © US Government 2012 Abstract Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the $ CO_{2} $ budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present. Mars Carbonate Climate CO Water Meteorites Spectroscopy Acidity Atmosphere Catling, David C. aut Berger, Gilles aut Chassefière, Eric aut Ehlmann, Bethany L. aut Michalski, Joseph R. aut Morris, Richard aut Ruff, Steven W. aut Sutter, Brad aut Enthalten in Space science reviews Springer Netherlands, 1962 174(2012), 1-4 vom: 25. Okt., Seite 301-328 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:174 year:2012 number:1-4 day:25 month:10 pages:301-328 https://doi.org/10.1007/s11214-012-9940-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4046 GBV_ILN_4306 GBV_ILN_4700 AR 174 2012 1-4 25 10 301-328 |
spelling |
10.1007/s11214-012-9940-y doi (DE-627)OLC2033699358 (DE-He213)s11214-012-9940-y-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Niles, Paul B. verfasserin aut Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © US Government 2012 Abstract Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the $ CO_{2} $ budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present. Mars Carbonate Climate CO Water Meteorites Spectroscopy Acidity Atmosphere Catling, David C. aut Berger, Gilles aut Chassefière, Eric aut Ehlmann, Bethany L. aut Michalski, Joseph R. aut Morris, Richard aut Ruff, Steven W. aut Sutter, Brad aut Enthalten in Space science reviews Springer Netherlands, 1962 174(2012), 1-4 vom: 25. Okt., Seite 301-328 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:174 year:2012 number:1-4 day:25 month:10 pages:301-328 https://doi.org/10.1007/s11214-012-9940-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4046 GBV_ILN_4306 GBV_ILN_4700 AR 174 2012 1-4 25 10 301-328 |
allfields_unstemmed |
10.1007/s11214-012-9940-y doi (DE-627)OLC2033699358 (DE-He213)s11214-012-9940-y-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Niles, Paul B. verfasserin aut Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © US Government 2012 Abstract Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the $ CO_{2} $ budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present. Mars Carbonate Climate CO Water Meteorites Spectroscopy Acidity Atmosphere Catling, David C. aut Berger, Gilles aut Chassefière, Eric aut Ehlmann, Bethany L. aut Michalski, Joseph R. aut Morris, Richard aut Ruff, Steven W. aut Sutter, Brad aut Enthalten in Space science reviews Springer Netherlands, 1962 174(2012), 1-4 vom: 25. Okt., Seite 301-328 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:174 year:2012 number:1-4 day:25 month:10 pages:301-328 https://doi.org/10.1007/s11214-012-9940-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4046 GBV_ILN_4306 GBV_ILN_4700 AR 174 2012 1-4 25 10 301-328 |
allfieldsGer |
10.1007/s11214-012-9940-y doi (DE-627)OLC2033699358 (DE-He213)s11214-012-9940-y-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Niles, Paul B. verfasserin aut Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © US Government 2012 Abstract Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the $ CO_{2} $ budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present. Mars Carbonate Climate CO Water Meteorites Spectroscopy Acidity Atmosphere Catling, David C. aut Berger, Gilles aut Chassefière, Eric aut Ehlmann, Bethany L. aut Michalski, Joseph R. aut Morris, Richard aut Ruff, Steven W. aut Sutter, Brad aut Enthalten in Space science reviews Springer Netherlands, 1962 174(2012), 1-4 vom: 25. Okt., Seite 301-328 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:174 year:2012 number:1-4 day:25 month:10 pages:301-328 https://doi.org/10.1007/s11214-012-9940-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4046 GBV_ILN_4306 GBV_ILN_4700 AR 174 2012 1-4 25 10 301-328 |
allfieldsSound |
10.1007/s11214-012-9940-y doi (DE-627)OLC2033699358 (DE-He213)s11214-012-9940-y-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Niles, Paul B. verfasserin aut Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © US Government 2012 Abstract Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the $ CO_{2} $ budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present. Mars Carbonate Climate CO Water Meteorites Spectroscopy Acidity Atmosphere Catling, David C. aut Berger, Gilles aut Chassefière, Eric aut Ehlmann, Bethany L. aut Michalski, Joseph R. aut Morris, Richard aut Ruff, Steven W. aut Sutter, Brad aut Enthalten in Space science reviews Springer Netherlands, 1962 174(2012), 1-4 vom: 25. Okt., Seite 301-328 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:174 year:2012 number:1-4 day:25 month:10 pages:301-328 https://doi.org/10.1007/s11214-012-9940-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4046 GBV_ILN_4306 GBV_ILN_4700 AR 174 2012 1-4 25 10 301-328 |
language |
English |
source |
Enthalten in Space science reviews 174(2012), 1-4 vom: 25. Okt., Seite 301-328 volume:174 year:2012 number:1-4 day:25 month:10 pages:301-328 |
sourceStr |
Enthalten in Space science reviews 174(2012), 1-4 vom: 25. Okt., Seite 301-328 volume:174 year:2012 number:1-4 day:25 month:10 pages:301-328 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mars Carbonate Climate CO Water Meteorites Spectroscopy Acidity Atmosphere |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Space science reviews |
authorswithroles_txt_mv |
Niles, Paul B. @@aut@@ Catling, David C. @@aut@@ Berger, Gilles @@aut@@ Chassefière, Eric @@aut@@ Ehlmann, Bethany L. @@aut@@ Michalski, Joseph R. @@aut@@ Morris, Richard @@aut@@ Ruff, Steven W. @@aut@@ Sutter, Brad @@aut@@ |
publishDateDaySort_date |
2012-10-25T00:00:00Z |
hierarchy_top_id |
129086606 |
dewey-sort |
3600 |
id |
OLC2033699358 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033699358</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504050815.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11214-012-9940-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033699358</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11214-012-9940-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Niles, Paul B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© US Government 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the $ CO_{2} $ budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbonate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meteorites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acidity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmosphere</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Catling, David C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berger, Gilles</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chassefière, Eric</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ehlmann, Bethany L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michalski, Joseph R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morris, Richard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruff, Steven W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sutter, Brad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Space science reviews</subfield><subfield code="d">Springer Netherlands, 1962</subfield><subfield code="g">174(2012), 1-4 vom: 25. Okt., Seite 301-328</subfield><subfield code="w">(DE-627)129086606</subfield><subfield code="w">(DE-600)4860-4</subfield><subfield code="w">(DE-576)014420724</subfield><subfield code="x">0038-6308</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:174</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1-4</subfield><subfield code="g">day:25</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:301-328</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11214-012-9940-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">174</subfield><subfield code="j">2012</subfield><subfield code="e">1-4</subfield><subfield code="b">25</subfield><subfield code="c">10</subfield><subfield code="h">301-328</subfield></datafield></record></collection>
|
author |
Niles, Paul B. |
spellingShingle |
Niles, Paul B. ddc 600 ssgn 16,12 misc Mars misc Carbonate misc Climate misc CO misc Water misc Meteorites misc Spectroscopy misc Acidity misc Atmosphere Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments |
authorStr |
Niles, Paul B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129086606 |
format |
Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0038-6308 |
topic_title |
600 VZ 16,12 ssgn Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments Mars Carbonate Climate CO Water Meteorites Spectroscopy Acidity Atmosphere |
topic |
ddc 600 ssgn 16,12 misc Mars misc Carbonate misc Climate misc CO misc Water misc Meteorites misc Spectroscopy misc Acidity misc Atmosphere |
topic_unstemmed |
ddc 600 ssgn 16,12 misc Mars misc Carbonate misc Climate misc CO misc Water misc Meteorites misc Spectroscopy misc Acidity misc Atmosphere |
topic_browse |
ddc 600 ssgn 16,12 misc Mars misc Carbonate misc Climate misc CO misc Water misc Meteorites misc Spectroscopy misc Acidity misc Atmosphere |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Space science reviews |
hierarchy_parent_id |
129086606 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Space science reviews |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 |
title |
Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments |
ctrlnum |
(DE-627)OLC2033699358 (DE-He213)s11214-012-9940-y-p |
title_full |
Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments |
author_sort |
Niles, Paul B. |
journal |
Space science reviews |
journalStr |
Space science reviews |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
301 |
author_browse |
Niles, Paul B. Catling, David C. Berger, Gilles Chassefière, Eric Ehlmann, Bethany L. Michalski, Joseph R. Morris, Richard Ruff, Steven W. Sutter, Brad |
container_volume |
174 |
class |
600 VZ 16,12 ssgn |
format_se |
Aufsätze |
author-letter |
Niles, Paul B. |
doi_str_mv |
10.1007/s11214-012-9940-y |
dewey-full |
600 |
title_sort |
geochemistry of carbonates on mars: implications for climate history and nature of aqueous environments |
title_auth |
Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments |
abstract |
Abstract Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the $ CO_{2} $ budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present. © US Government 2012 |
abstractGer |
Abstract Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the $ CO_{2} $ budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present. © US Government 2012 |
abstract_unstemmed |
Abstract Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the $ CO_{2} $ budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present. © US Government 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4046 GBV_ILN_4306 GBV_ILN_4700 |
container_issue |
1-4 |
title_short |
Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments |
url |
https://doi.org/10.1007/s11214-012-9940-y |
remote_bool |
false |
author2 |
Catling, David C. Berger, Gilles Chassefière, Eric Ehlmann, Bethany L. Michalski, Joseph R. Morris, Richard Ruff, Steven W. Sutter, Brad |
author2Str |
Catling, David C. Berger, Gilles Chassefière, Eric Ehlmann, Bethany L. Michalski, Joseph R. Morris, Richard Ruff, Steven W. Sutter, Brad |
ppnlink |
129086606 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11214-012-9940-y |
up_date |
2024-07-03T18:04:41.756Z |
_version_ |
1803582053295325184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033699358</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504050815.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11214-012-9940-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033699358</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11214-012-9940-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Niles, Paul B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© US Government 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the $ CO_{2} $ budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2–5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3–6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbonate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meteorites</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acidity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmosphere</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Catling, David C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berger, Gilles</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chassefière, Eric</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ehlmann, Bethany L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michalski, Joseph R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morris, Richard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruff, Steven W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sutter, Brad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Space science reviews</subfield><subfield code="d">Springer Netherlands, 1962</subfield><subfield code="g">174(2012), 1-4 vom: 25. Okt., Seite 301-328</subfield><subfield code="w">(DE-627)129086606</subfield><subfield code="w">(DE-600)4860-4</subfield><subfield code="w">(DE-576)014420724</subfield><subfield code="x">0038-6308</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:174</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1-4</subfield><subfield code="g">day:25</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:301-328</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11214-012-9940-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">174</subfield><subfield code="j">2012</subfield><subfield code="e">1-4</subfield><subfield code="b">25</subfield><subfield code="c">10</subfield><subfield code="h">301-328</subfield></datafield></record></collection>
|
score |
7.3985558 |