The CASSIOPE/e-POP Magnetic Field Instrument (MGF)
Abstract Field-aligned currents couple energy between the Earth’s magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar io...
Ausführliche Beschreibung
Autor*in: |
Wallis, D. D. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Space science reviews - Springer Netherlands, 1962, 189(2014), 1-4 vom: 22. Okt., Seite 27-39 |
---|---|
Übergeordnetes Werk: |
volume:189 ; year:2014 ; number:1-4 ; day:22 ; month:10 ; pages:27-39 |
Links: |
---|
DOI / URN: |
10.1007/s11214-014-0105-z |
---|
Katalog-ID: |
OLC2033701247 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033701247 | ||
003 | DE-627 | ||
005 | 20230504050830.0 | ||
007 | tu | ||
008 | 200819s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11214-014-0105-z |2 doi | |
035 | |a (DE-627)OLC2033701247 | ||
035 | |a (DE-He213)s11214-014-0105-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 16,12 |2 ssgn | ||
100 | 1 | |a Wallis, D. D. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The CASSIOPE/e-POP Magnetic Field Instrument (MGF) |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2014 | ||
520 | |a Abstract Field-aligned currents couple energy between the Earth’s magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (∼50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz. | ||
650 | 4 | |a Magnetometer | |
650 | 4 | |a Fluxgate | |
650 | 4 | |a Satellite | |
650 | 4 | |a Field-aligned currents | |
700 | 1 | |a Miles, D. M. |4 aut | |
700 | 1 | |a Narod, B. B. |4 aut | |
700 | 1 | |a Bennest, J. R. |4 aut | |
700 | 1 | |a Murphy, K. R. |4 aut | |
700 | 1 | |a Mann, I. R. |4 aut | |
700 | 1 | |a Yau, A. W. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Space science reviews |d Springer Netherlands, 1962 |g 189(2014), 1-4 vom: 22. Okt., Seite 27-39 |w (DE-627)129086606 |w (DE-600)4860-4 |w (DE-576)014420724 |x 0038-6308 |7 nnns |
773 | 1 | 8 | |g volume:189 |g year:2014 |g number:1-4 |g day:22 |g month:10 |g pages:27-39 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11214-014-0105-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 189 |j 2014 |e 1-4 |b 22 |c 10 |h 27-39 |
author_variant |
d d w dd ddw d m m dm dmm b b n bb bbn j r b jr jrb k r m kr krm i r m ir irm a w y aw awy |
---|---|
matchkey_str |
article:00386308:2014----::hcsipeomgeifedn |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s11214-014-0105-z doi (DE-627)OLC2033701247 (DE-He213)s11214-014-0105-z-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Wallis, D. D. verfasserin aut The CASSIOPE/e-POP Magnetic Field Instrument (MGF) 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract Field-aligned currents couple energy between the Earth’s magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (∼50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz. Magnetometer Fluxgate Satellite Field-aligned currents Miles, D. M. aut Narod, B. B. aut Bennest, J. R. aut Murphy, K. R. aut Mann, I. R. aut Yau, A. W. aut Enthalten in Space science reviews Springer Netherlands, 1962 189(2014), 1-4 vom: 22. Okt., Seite 27-39 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:189 year:2014 number:1-4 day:22 month:10 pages:27-39 https://doi.org/10.1007/s11214-014-0105-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4700 AR 189 2014 1-4 22 10 27-39 |
spelling |
10.1007/s11214-014-0105-z doi (DE-627)OLC2033701247 (DE-He213)s11214-014-0105-z-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Wallis, D. D. verfasserin aut The CASSIOPE/e-POP Magnetic Field Instrument (MGF) 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract Field-aligned currents couple energy between the Earth’s magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (∼50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz. Magnetometer Fluxgate Satellite Field-aligned currents Miles, D. M. aut Narod, B. B. aut Bennest, J. R. aut Murphy, K. R. aut Mann, I. R. aut Yau, A. W. aut Enthalten in Space science reviews Springer Netherlands, 1962 189(2014), 1-4 vom: 22. Okt., Seite 27-39 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:189 year:2014 number:1-4 day:22 month:10 pages:27-39 https://doi.org/10.1007/s11214-014-0105-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4700 AR 189 2014 1-4 22 10 27-39 |
allfields_unstemmed |
10.1007/s11214-014-0105-z doi (DE-627)OLC2033701247 (DE-He213)s11214-014-0105-z-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Wallis, D. D. verfasserin aut The CASSIOPE/e-POP Magnetic Field Instrument (MGF) 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract Field-aligned currents couple energy between the Earth’s magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (∼50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz. Magnetometer Fluxgate Satellite Field-aligned currents Miles, D. M. aut Narod, B. B. aut Bennest, J. R. aut Murphy, K. R. aut Mann, I. R. aut Yau, A. W. aut Enthalten in Space science reviews Springer Netherlands, 1962 189(2014), 1-4 vom: 22. Okt., Seite 27-39 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:189 year:2014 number:1-4 day:22 month:10 pages:27-39 https://doi.org/10.1007/s11214-014-0105-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4700 AR 189 2014 1-4 22 10 27-39 |
allfieldsGer |
10.1007/s11214-014-0105-z doi (DE-627)OLC2033701247 (DE-He213)s11214-014-0105-z-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Wallis, D. D. verfasserin aut The CASSIOPE/e-POP Magnetic Field Instrument (MGF) 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract Field-aligned currents couple energy between the Earth’s magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (∼50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz. Magnetometer Fluxgate Satellite Field-aligned currents Miles, D. M. aut Narod, B. B. aut Bennest, J. R. aut Murphy, K. R. aut Mann, I. R. aut Yau, A. W. aut Enthalten in Space science reviews Springer Netherlands, 1962 189(2014), 1-4 vom: 22. Okt., Seite 27-39 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:189 year:2014 number:1-4 day:22 month:10 pages:27-39 https://doi.org/10.1007/s11214-014-0105-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4700 AR 189 2014 1-4 22 10 27-39 |
allfieldsSound |
10.1007/s11214-014-0105-z doi (DE-627)OLC2033701247 (DE-He213)s11214-014-0105-z-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Wallis, D. D. verfasserin aut The CASSIOPE/e-POP Magnetic Field Instrument (MGF) 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2014 Abstract Field-aligned currents couple energy between the Earth’s magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (∼50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz. Magnetometer Fluxgate Satellite Field-aligned currents Miles, D. M. aut Narod, B. B. aut Bennest, J. R. aut Murphy, K. R. aut Mann, I. R. aut Yau, A. W. aut Enthalten in Space science reviews Springer Netherlands, 1962 189(2014), 1-4 vom: 22. Okt., Seite 27-39 (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:189 year:2014 number:1-4 day:22 month:10 pages:27-39 https://doi.org/10.1007/s11214-014-0105-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4700 AR 189 2014 1-4 22 10 27-39 |
language |
English |
source |
Enthalten in Space science reviews 189(2014), 1-4 vom: 22. Okt., Seite 27-39 volume:189 year:2014 number:1-4 day:22 month:10 pages:27-39 |
sourceStr |
Enthalten in Space science reviews 189(2014), 1-4 vom: 22. Okt., Seite 27-39 volume:189 year:2014 number:1-4 day:22 month:10 pages:27-39 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Magnetometer Fluxgate Satellite Field-aligned currents |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Space science reviews |
authorswithroles_txt_mv |
Wallis, D. D. @@aut@@ Miles, D. M. @@aut@@ Narod, B. B. @@aut@@ Bennest, J. R. @@aut@@ Murphy, K. R. @@aut@@ Mann, I. R. @@aut@@ Yau, A. W. @@aut@@ |
publishDateDaySort_date |
2014-10-22T00:00:00Z |
hierarchy_top_id |
129086606 |
dewey-sort |
3600 |
id |
OLC2033701247 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033701247</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504050830.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11214-014-0105-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033701247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11214-014-0105-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wallis, D. D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The CASSIOPE/e-POP Magnetic Field Instrument (MGF)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Field-aligned currents couple energy between the Earth’s magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (∼50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluxgate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Satellite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field-aligned currents</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miles, D. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Narod, B. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bennest, J. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murphy, K. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mann, I. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yau, A. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Space science reviews</subfield><subfield code="d">Springer Netherlands, 1962</subfield><subfield code="g">189(2014), 1-4 vom: 22. Okt., Seite 27-39</subfield><subfield code="w">(DE-627)129086606</subfield><subfield code="w">(DE-600)4860-4</subfield><subfield code="w">(DE-576)014420724</subfield><subfield code="x">0038-6308</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:189</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1-4</subfield><subfield code="g">day:22</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:27-39</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11214-014-0105-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">189</subfield><subfield code="j">2014</subfield><subfield code="e">1-4</subfield><subfield code="b">22</subfield><subfield code="c">10</subfield><subfield code="h">27-39</subfield></datafield></record></collection>
|
author |
Wallis, D. D. |
spellingShingle |
Wallis, D. D. ddc 600 ssgn 16,12 misc Magnetometer misc Fluxgate misc Satellite misc Field-aligned currents The CASSIOPE/e-POP Magnetic Field Instrument (MGF) |
authorStr |
Wallis, D. D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129086606 |
format |
Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0038-6308 |
topic_title |
600 VZ 16,12 ssgn The CASSIOPE/e-POP Magnetic Field Instrument (MGF) Magnetometer Fluxgate Satellite Field-aligned currents |
topic |
ddc 600 ssgn 16,12 misc Magnetometer misc Fluxgate misc Satellite misc Field-aligned currents |
topic_unstemmed |
ddc 600 ssgn 16,12 misc Magnetometer misc Fluxgate misc Satellite misc Field-aligned currents |
topic_browse |
ddc 600 ssgn 16,12 misc Magnetometer misc Fluxgate misc Satellite misc Field-aligned currents |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Space science reviews |
hierarchy_parent_id |
129086606 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Space science reviews |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 |
title |
The CASSIOPE/e-POP Magnetic Field Instrument (MGF) |
ctrlnum |
(DE-627)OLC2033701247 (DE-He213)s11214-014-0105-z-p |
title_full |
The CASSIOPE/e-POP Magnetic Field Instrument (MGF) |
author_sort |
Wallis, D. D. |
journal |
Space science reviews |
journalStr |
Space science reviews |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
27 |
author_browse |
Wallis, D. D. Miles, D. M. Narod, B. B. Bennest, J. R. Murphy, K. R. Mann, I. R. Yau, A. W. |
container_volume |
189 |
class |
600 VZ 16,12 ssgn |
format_se |
Aufsätze |
author-letter |
Wallis, D. D. |
doi_str_mv |
10.1007/s11214-014-0105-z |
dewey-full |
600 |
title_sort |
the cassiope/e-pop magnetic field instrument (mgf) |
title_auth |
The CASSIOPE/e-POP Magnetic Field Instrument (MGF) |
abstract |
Abstract Field-aligned currents couple energy between the Earth’s magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (∼50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz. © The Author(s) 2014 |
abstractGer |
Abstract Field-aligned currents couple energy between the Earth’s magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (∼50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz. © The Author(s) 2014 |
abstract_unstemmed |
Abstract Field-aligned currents couple energy between the Earth’s magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (∼50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz. © The Author(s) 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4700 |
container_issue |
1-4 |
title_short |
The CASSIOPE/e-POP Magnetic Field Instrument (MGF) |
url |
https://doi.org/10.1007/s11214-014-0105-z |
remote_bool |
false |
author2 |
Miles, D. M. Narod, B. B. Bennest, J. R. Murphy, K. R. Mann, I. R. Yau, A. W. |
author2Str |
Miles, D. M. Narod, B. B. Bennest, J. R. Murphy, K. R. Mann, I. R. Yau, A. W. |
ppnlink |
129086606 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11214-014-0105-z |
up_date |
2024-07-03T18:05:16.816Z |
_version_ |
1803582090058399744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033701247</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504050830.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11214-014-0105-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033701247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11214-014-0105-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wallis, D. D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The CASSIOPE/e-POP Magnetic Field Instrument (MGF)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Field-aligned currents couple energy between the Earth’s magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (∼50 meters) to a resolution of 0.0625 nT and outputs data at 1952 bytes per second including temperature measurements. Its power consumption is 2.2 watts, and its noise level is 7 pT per root Hz at 1 Hz.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetometer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluxgate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Satellite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field-aligned currents</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miles, D. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Narod, B. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bennest, J. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murphy, K. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mann, I. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yau, A. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Space science reviews</subfield><subfield code="d">Springer Netherlands, 1962</subfield><subfield code="g">189(2014), 1-4 vom: 22. Okt., Seite 27-39</subfield><subfield code="w">(DE-627)129086606</subfield><subfield code="w">(DE-600)4860-4</subfield><subfield code="w">(DE-576)014420724</subfield><subfield code="x">0038-6308</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:189</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1-4</subfield><subfield code="g">day:22</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:27-39</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11214-014-0105-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">189</subfield><subfield code="j">2014</subfield><subfield code="e">1-4</subfield><subfield code="b">22</subfield><subfield code="c">10</subfield><subfield code="h">27-39</subfield></datafield></record></collection>
|
score |
7.399295 |