Estimating the number of true null hypotheses in multiple hypothesis testing
Abstract The overall Type I error computed based on the traditional means may be inflated if many hypotheses are compared simultaneously. The family-wise error rate (FWER) and false discovery rate (FDR) are some of commonly used error rates to measure Type I error under the multiple hypothesis setti...
Ausführliche Beschreibung
Autor*in: |
Hwang, Yi-Ting [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
Adaptive FDR controlling procedure |
---|
Anmerkung: |
© Springer Science+Business Media New York 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Statistics and computing - Springer US, 1991, 24(2013), 3 vom: 08. Feb., Seite 399-416 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2013 ; number:3 ; day:08 ; month:02 ; pages:399-416 |
Links: |
---|
DOI / URN: |
10.1007/s11222-013-9377-5 |
---|
Katalog-ID: |
OLC2033746127 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033746127 | ||
003 | DE-627 | ||
005 | 20230504051445.0 | ||
007 | tu | ||
008 | 200819s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11222-013-9377-5 |2 doi | |
035 | |a (DE-627)OLC2033746127 | ||
035 | |a (DE-He213)s11222-013-9377-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q VZ |
100 | 1 | |a Hwang, Yi-Ting |e verfasserin |4 aut | |
245 | 1 | 0 | |a Estimating the number of true null hypotheses in multiple hypothesis testing |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2013 | ||
520 | |a Abstract The overall Type I error computed based on the traditional means may be inflated if many hypotheses are compared simultaneously. The family-wise error rate (FWER) and false discovery rate (FDR) are some of commonly used error rates to measure Type I error under the multiple hypothesis setting. Many controlling FWER and FDR procedures have been proposed and have the ability to control the desired FWER/FDR under certain scenarios. Nevertheless, these controlling procedures become too conservative when only some hypotheses are from the null. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) proposed an adaptive FDR-controlling procedure that adapts the information of the number of true null hypotheses (m0) to overcome this problem. Since m0 is unknown, estimators of m0 are needed. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) suggested a graphical approach to construct an estimator of m0, which is shown to overestimate m0 (see Hwang in J. Stat. Comput. Simul. 81:207–220, 2011). Following a similar construction, this paper proposes new estimators of m0. Monte Carlo simulations are used to evaluate accuracy and precision of new estimators and the feasibility of these new adaptive procedures is evaluated under various simulation settings. | ||
650 | 4 | |a Adaptive FDR controlling procedure | |
650 | 4 | |a False discovery rate | |
650 | 4 | |a Multiple hypothesis testing | |
650 | 4 | |a Number of true null hypotheses | |
650 | 4 | |a Sensitivity | |
700 | 1 | |a Kuo, Hsun-Chih |4 aut | |
700 | 1 | |a Wang, Chun-Chao |4 aut | |
700 | 1 | |a Lee, Meng Feng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Statistics and computing |d Springer US, 1991 |g 24(2013), 3 vom: 08. Feb., Seite 399-416 |w (DE-627)131007963 |w (DE-600)1087487-2 |w (DE-576)052732894 |x 0960-3174 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2013 |g number:3 |g day:08 |g month:02 |g pages:399-416 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11222-013-9377-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 24 |j 2013 |e 3 |b 08 |c 02 |h 399-416 |
author_variant |
y t h yth h c k hck c c w ccw m f l mf mfl |
---|---|
matchkey_str |
article:09603174:2013----::siaighnmeotunlhpteeimlil |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s11222-013-9377-5 doi (DE-627)OLC2033746127 (DE-He213)s11222-013-9377-5-p DE-627 ger DE-627 rakwb eng 004 620 VZ Hwang, Yi-Ting verfasserin aut Estimating the number of true null hypotheses in multiple hypothesis testing 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract The overall Type I error computed based on the traditional means may be inflated if many hypotheses are compared simultaneously. The family-wise error rate (FWER) and false discovery rate (FDR) are some of commonly used error rates to measure Type I error under the multiple hypothesis setting. Many controlling FWER and FDR procedures have been proposed and have the ability to control the desired FWER/FDR under certain scenarios. Nevertheless, these controlling procedures become too conservative when only some hypotheses are from the null. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) proposed an adaptive FDR-controlling procedure that adapts the information of the number of true null hypotheses (m0) to overcome this problem. Since m0 is unknown, estimators of m0 are needed. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) suggested a graphical approach to construct an estimator of m0, which is shown to overestimate m0 (see Hwang in J. Stat. Comput. Simul. 81:207–220, 2011). Following a similar construction, this paper proposes new estimators of m0. Monte Carlo simulations are used to evaluate accuracy and precision of new estimators and the feasibility of these new adaptive procedures is evaluated under various simulation settings. Adaptive FDR controlling procedure False discovery rate Multiple hypothesis testing Number of true null hypotheses Sensitivity Kuo, Hsun-Chih aut Wang, Chun-Chao aut Lee, Meng Feng aut Enthalten in Statistics and computing Springer US, 1991 24(2013), 3 vom: 08. Feb., Seite 399-416 (DE-627)131007963 (DE-600)1087487-2 (DE-576)052732894 0960-3174 nnns volume:24 year:2013 number:3 day:08 month:02 pages:399-416 https://doi.org/10.1007/s11222-013-9377-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2012 GBV_ILN_4126 AR 24 2013 3 08 02 399-416 |
spelling |
10.1007/s11222-013-9377-5 doi (DE-627)OLC2033746127 (DE-He213)s11222-013-9377-5-p DE-627 ger DE-627 rakwb eng 004 620 VZ Hwang, Yi-Ting verfasserin aut Estimating the number of true null hypotheses in multiple hypothesis testing 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract The overall Type I error computed based on the traditional means may be inflated if many hypotheses are compared simultaneously. The family-wise error rate (FWER) and false discovery rate (FDR) are some of commonly used error rates to measure Type I error under the multiple hypothesis setting. Many controlling FWER and FDR procedures have been proposed and have the ability to control the desired FWER/FDR under certain scenarios. Nevertheless, these controlling procedures become too conservative when only some hypotheses are from the null. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) proposed an adaptive FDR-controlling procedure that adapts the information of the number of true null hypotheses (m0) to overcome this problem. Since m0 is unknown, estimators of m0 are needed. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) suggested a graphical approach to construct an estimator of m0, which is shown to overestimate m0 (see Hwang in J. Stat. Comput. Simul. 81:207–220, 2011). Following a similar construction, this paper proposes new estimators of m0. Monte Carlo simulations are used to evaluate accuracy and precision of new estimators and the feasibility of these new adaptive procedures is evaluated under various simulation settings. Adaptive FDR controlling procedure False discovery rate Multiple hypothesis testing Number of true null hypotheses Sensitivity Kuo, Hsun-Chih aut Wang, Chun-Chao aut Lee, Meng Feng aut Enthalten in Statistics and computing Springer US, 1991 24(2013), 3 vom: 08. Feb., Seite 399-416 (DE-627)131007963 (DE-600)1087487-2 (DE-576)052732894 0960-3174 nnns volume:24 year:2013 number:3 day:08 month:02 pages:399-416 https://doi.org/10.1007/s11222-013-9377-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2012 GBV_ILN_4126 AR 24 2013 3 08 02 399-416 |
allfields_unstemmed |
10.1007/s11222-013-9377-5 doi (DE-627)OLC2033746127 (DE-He213)s11222-013-9377-5-p DE-627 ger DE-627 rakwb eng 004 620 VZ Hwang, Yi-Ting verfasserin aut Estimating the number of true null hypotheses in multiple hypothesis testing 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract The overall Type I error computed based on the traditional means may be inflated if many hypotheses are compared simultaneously. The family-wise error rate (FWER) and false discovery rate (FDR) are some of commonly used error rates to measure Type I error under the multiple hypothesis setting. Many controlling FWER and FDR procedures have been proposed and have the ability to control the desired FWER/FDR under certain scenarios. Nevertheless, these controlling procedures become too conservative when only some hypotheses are from the null. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) proposed an adaptive FDR-controlling procedure that adapts the information of the number of true null hypotheses (m0) to overcome this problem. Since m0 is unknown, estimators of m0 are needed. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) suggested a graphical approach to construct an estimator of m0, which is shown to overestimate m0 (see Hwang in J. Stat. Comput. Simul. 81:207–220, 2011). Following a similar construction, this paper proposes new estimators of m0. Monte Carlo simulations are used to evaluate accuracy and precision of new estimators and the feasibility of these new adaptive procedures is evaluated under various simulation settings. Adaptive FDR controlling procedure False discovery rate Multiple hypothesis testing Number of true null hypotheses Sensitivity Kuo, Hsun-Chih aut Wang, Chun-Chao aut Lee, Meng Feng aut Enthalten in Statistics and computing Springer US, 1991 24(2013), 3 vom: 08. Feb., Seite 399-416 (DE-627)131007963 (DE-600)1087487-2 (DE-576)052732894 0960-3174 nnns volume:24 year:2013 number:3 day:08 month:02 pages:399-416 https://doi.org/10.1007/s11222-013-9377-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2012 GBV_ILN_4126 AR 24 2013 3 08 02 399-416 |
allfieldsGer |
10.1007/s11222-013-9377-5 doi (DE-627)OLC2033746127 (DE-He213)s11222-013-9377-5-p DE-627 ger DE-627 rakwb eng 004 620 VZ Hwang, Yi-Ting verfasserin aut Estimating the number of true null hypotheses in multiple hypothesis testing 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract The overall Type I error computed based on the traditional means may be inflated if many hypotheses are compared simultaneously. The family-wise error rate (FWER) and false discovery rate (FDR) are some of commonly used error rates to measure Type I error under the multiple hypothesis setting. Many controlling FWER and FDR procedures have been proposed and have the ability to control the desired FWER/FDR under certain scenarios. Nevertheless, these controlling procedures become too conservative when only some hypotheses are from the null. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) proposed an adaptive FDR-controlling procedure that adapts the information of the number of true null hypotheses (m0) to overcome this problem. Since m0 is unknown, estimators of m0 are needed. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) suggested a graphical approach to construct an estimator of m0, which is shown to overestimate m0 (see Hwang in J. Stat. Comput. Simul. 81:207–220, 2011). Following a similar construction, this paper proposes new estimators of m0. Monte Carlo simulations are used to evaluate accuracy and precision of new estimators and the feasibility of these new adaptive procedures is evaluated under various simulation settings. Adaptive FDR controlling procedure False discovery rate Multiple hypothesis testing Number of true null hypotheses Sensitivity Kuo, Hsun-Chih aut Wang, Chun-Chao aut Lee, Meng Feng aut Enthalten in Statistics and computing Springer US, 1991 24(2013), 3 vom: 08. Feb., Seite 399-416 (DE-627)131007963 (DE-600)1087487-2 (DE-576)052732894 0960-3174 nnns volume:24 year:2013 number:3 day:08 month:02 pages:399-416 https://doi.org/10.1007/s11222-013-9377-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2012 GBV_ILN_4126 AR 24 2013 3 08 02 399-416 |
allfieldsSound |
10.1007/s11222-013-9377-5 doi (DE-627)OLC2033746127 (DE-He213)s11222-013-9377-5-p DE-627 ger DE-627 rakwb eng 004 620 VZ Hwang, Yi-Ting verfasserin aut Estimating the number of true null hypotheses in multiple hypothesis testing 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2013 Abstract The overall Type I error computed based on the traditional means may be inflated if many hypotheses are compared simultaneously. The family-wise error rate (FWER) and false discovery rate (FDR) are some of commonly used error rates to measure Type I error under the multiple hypothesis setting. Many controlling FWER and FDR procedures have been proposed and have the ability to control the desired FWER/FDR under certain scenarios. Nevertheless, these controlling procedures become too conservative when only some hypotheses are from the null. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) proposed an adaptive FDR-controlling procedure that adapts the information of the number of true null hypotheses (m0) to overcome this problem. Since m0 is unknown, estimators of m0 are needed. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) suggested a graphical approach to construct an estimator of m0, which is shown to overestimate m0 (see Hwang in J. Stat. Comput. Simul. 81:207–220, 2011). Following a similar construction, this paper proposes new estimators of m0. Monte Carlo simulations are used to evaluate accuracy and precision of new estimators and the feasibility of these new adaptive procedures is evaluated under various simulation settings. Adaptive FDR controlling procedure False discovery rate Multiple hypothesis testing Number of true null hypotheses Sensitivity Kuo, Hsun-Chih aut Wang, Chun-Chao aut Lee, Meng Feng aut Enthalten in Statistics and computing Springer US, 1991 24(2013), 3 vom: 08. Feb., Seite 399-416 (DE-627)131007963 (DE-600)1087487-2 (DE-576)052732894 0960-3174 nnns volume:24 year:2013 number:3 day:08 month:02 pages:399-416 https://doi.org/10.1007/s11222-013-9377-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2012 GBV_ILN_4126 AR 24 2013 3 08 02 399-416 |
language |
English |
source |
Enthalten in Statistics and computing 24(2013), 3 vom: 08. Feb., Seite 399-416 volume:24 year:2013 number:3 day:08 month:02 pages:399-416 |
sourceStr |
Enthalten in Statistics and computing 24(2013), 3 vom: 08. Feb., Seite 399-416 volume:24 year:2013 number:3 day:08 month:02 pages:399-416 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Adaptive FDR controlling procedure False discovery rate Multiple hypothesis testing Number of true null hypotheses Sensitivity |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Statistics and computing |
authorswithroles_txt_mv |
Hwang, Yi-Ting @@aut@@ Kuo, Hsun-Chih @@aut@@ Wang, Chun-Chao @@aut@@ Lee, Meng Feng @@aut@@ |
publishDateDaySort_date |
2013-02-08T00:00:00Z |
hierarchy_top_id |
131007963 |
dewey-sort |
14 |
id |
OLC2033746127 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033746127</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504051445.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11222-013-9377-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033746127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11222-013-9377-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hwang, Yi-Ting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating the number of true null hypotheses in multiple hypothesis testing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The overall Type I error computed based on the traditional means may be inflated if many hypotheses are compared simultaneously. The family-wise error rate (FWER) and false discovery rate (FDR) are some of commonly used error rates to measure Type I error under the multiple hypothesis setting. Many controlling FWER and FDR procedures have been proposed and have the ability to control the desired FWER/FDR under certain scenarios. Nevertheless, these controlling procedures become too conservative when only some hypotheses are from the null. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) proposed an adaptive FDR-controlling procedure that adapts the information of the number of true null hypotheses (m0) to overcome this problem. Since m0 is unknown, estimators of m0 are needed. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) suggested a graphical approach to construct an estimator of m0, which is shown to overestimate m0 (see Hwang in J. Stat. Comput. Simul. 81:207–220, 2011). Following a similar construction, this paper proposes new estimators of m0. Monte Carlo simulations are used to evaluate accuracy and precision of new estimators and the feasibility of these new adaptive procedures is evaluated under various simulation settings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive FDR controlling procedure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">False discovery rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple hypothesis testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number of true null hypotheses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuo, Hsun-Chih</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chun-Chao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Meng Feng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistics and computing</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">24(2013), 3 vom: 08. Feb., Seite 399-416</subfield><subfield code="w">(DE-627)131007963</subfield><subfield code="w">(DE-600)1087487-2</subfield><subfield code="w">(DE-576)052732894</subfield><subfield code="x">0960-3174</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3</subfield><subfield code="g">day:08</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:399-416</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11222-013-9377-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2013</subfield><subfield code="e">3</subfield><subfield code="b">08</subfield><subfield code="c">02</subfield><subfield code="h">399-416</subfield></datafield></record></collection>
|
author |
Hwang, Yi-Ting |
spellingShingle |
Hwang, Yi-Ting ddc 004 misc Adaptive FDR controlling procedure misc False discovery rate misc Multiple hypothesis testing misc Number of true null hypotheses misc Sensitivity Estimating the number of true null hypotheses in multiple hypothesis testing |
authorStr |
Hwang, Yi-Ting |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131007963 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0960-3174 |
topic_title |
004 620 VZ Estimating the number of true null hypotheses in multiple hypothesis testing Adaptive FDR controlling procedure False discovery rate Multiple hypothesis testing Number of true null hypotheses Sensitivity |
topic |
ddc 004 misc Adaptive FDR controlling procedure misc False discovery rate misc Multiple hypothesis testing misc Number of true null hypotheses misc Sensitivity |
topic_unstemmed |
ddc 004 misc Adaptive FDR controlling procedure misc False discovery rate misc Multiple hypothesis testing misc Number of true null hypotheses misc Sensitivity |
topic_browse |
ddc 004 misc Adaptive FDR controlling procedure misc False discovery rate misc Multiple hypothesis testing misc Number of true null hypotheses misc Sensitivity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Statistics and computing |
hierarchy_parent_id |
131007963 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
Statistics and computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131007963 (DE-600)1087487-2 (DE-576)052732894 |
title |
Estimating the number of true null hypotheses in multiple hypothesis testing |
ctrlnum |
(DE-627)OLC2033746127 (DE-He213)s11222-013-9377-5-p |
title_full |
Estimating the number of true null hypotheses in multiple hypothesis testing |
author_sort |
Hwang, Yi-Ting |
journal |
Statistics and computing |
journalStr |
Statistics and computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
399 |
author_browse |
Hwang, Yi-Ting Kuo, Hsun-Chih Wang, Chun-Chao Lee, Meng Feng |
container_volume |
24 |
class |
004 620 VZ |
format_se |
Aufsätze |
author-letter |
Hwang, Yi-Ting |
doi_str_mv |
10.1007/s11222-013-9377-5 |
dewey-full |
004 620 |
title_sort |
estimating the number of true null hypotheses in multiple hypothesis testing |
title_auth |
Estimating the number of true null hypotheses in multiple hypothesis testing |
abstract |
Abstract The overall Type I error computed based on the traditional means may be inflated if many hypotheses are compared simultaneously. The family-wise error rate (FWER) and false discovery rate (FDR) are some of commonly used error rates to measure Type I error under the multiple hypothesis setting. Many controlling FWER and FDR procedures have been proposed and have the ability to control the desired FWER/FDR under certain scenarios. Nevertheless, these controlling procedures become too conservative when only some hypotheses are from the null. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) proposed an adaptive FDR-controlling procedure that adapts the information of the number of true null hypotheses (m0) to overcome this problem. Since m0 is unknown, estimators of m0 are needed. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) suggested a graphical approach to construct an estimator of m0, which is shown to overestimate m0 (see Hwang in J. Stat. Comput. Simul. 81:207–220, 2011). Following a similar construction, this paper proposes new estimators of m0. Monte Carlo simulations are used to evaluate accuracy and precision of new estimators and the feasibility of these new adaptive procedures is evaluated under various simulation settings. © Springer Science+Business Media New York 2013 |
abstractGer |
Abstract The overall Type I error computed based on the traditional means may be inflated if many hypotheses are compared simultaneously. The family-wise error rate (FWER) and false discovery rate (FDR) are some of commonly used error rates to measure Type I error under the multiple hypothesis setting. Many controlling FWER and FDR procedures have been proposed and have the ability to control the desired FWER/FDR under certain scenarios. Nevertheless, these controlling procedures become too conservative when only some hypotheses are from the null. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) proposed an adaptive FDR-controlling procedure that adapts the information of the number of true null hypotheses (m0) to overcome this problem. Since m0 is unknown, estimators of m0 are needed. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) suggested a graphical approach to construct an estimator of m0, which is shown to overestimate m0 (see Hwang in J. Stat. Comput. Simul. 81:207–220, 2011). Following a similar construction, this paper proposes new estimators of m0. Monte Carlo simulations are used to evaluate accuracy and precision of new estimators and the feasibility of these new adaptive procedures is evaluated under various simulation settings. © Springer Science+Business Media New York 2013 |
abstract_unstemmed |
Abstract The overall Type I error computed based on the traditional means may be inflated if many hypotheses are compared simultaneously. The family-wise error rate (FWER) and false discovery rate (FDR) are some of commonly used error rates to measure Type I error under the multiple hypothesis setting. Many controlling FWER and FDR procedures have been proposed and have the ability to control the desired FWER/FDR under certain scenarios. Nevertheless, these controlling procedures become too conservative when only some hypotheses are from the null. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) proposed an adaptive FDR-controlling procedure that adapts the information of the number of true null hypotheses (m0) to overcome this problem. Since m0 is unknown, estimators of m0 are needed. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) suggested a graphical approach to construct an estimator of m0, which is shown to overestimate m0 (see Hwang in J. Stat. Comput. Simul. 81:207–220, 2011). Following a similar construction, this paper proposes new estimators of m0. Monte Carlo simulations are used to evaluate accuracy and precision of new estimators and the feasibility of these new adaptive procedures is evaluated under various simulation settings. © Springer Science+Business Media New York 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2012 GBV_ILN_4126 |
container_issue |
3 |
title_short |
Estimating the number of true null hypotheses in multiple hypothesis testing |
url |
https://doi.org/10.1007/s11222-013-9377-5 |
remote_bool |
false |
author2 |
Kuo, Hsun-Chih Wang, Chun-Chao Lee, Meng Feng |
author2Str |
Kuo, Hsun-Chih Wang, Chun-Chao Lee, Meng Feng |
ppnlink |
131007963 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11222-013-9377-5 |
up_date |
2024-07-03T18:16:43.569Z |
_version_ |
1803582810173210624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033746127</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504051445.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11222-013-9377-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033746127</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11222-013-9377-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hwang, Yi-Ting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimating the number of true null hypotheses in multiple hypothesis testing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The overall Type I error computed based on the traditional means may be inflated if many hypotheses are compared simultaneously. The family-wise error rate (FWER) and false discovery rate (FDR) are some of commonly used error rates to measure Type I error under the multiple hypothesis setting. Many controlling FWER and FDR procedures have been proposed and have the ability to control the desired FWER/FDR under certain scenarios. Nevertheless, these controlling procedures become too conservative when only some hypotheses are from the null. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) proposed an adaptive FDR-controlling procedure that adapts the information of the number of true null hypotheses (m0) to overcome this problem. Since m0 is unknown, estimators of m0 are needed. Benjamini and Hochberg (J. Educ. Behav. Stat. 25:60–83, 2000) suggested a graphical approach to construct an estimator of m0, which is shown to overestimate m0 (see Hwang in J. Stat. Comput. Simul. 81:207–220, 2011). Following a similar construction, this paper proposes new estimators of m0. Monte Carlo simulations are used to evaluate accuracy and precision of new estimators and the feasibility of these new adaptive procedures is evaluated under various simulation settings.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive FDR controlling procedure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">False discovery rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple hypothesis testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number of true null hypotheses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sensitivity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuo, Hsun-Chih</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chun-Chao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Meng Feng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistics and computing</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">24(2013), 3 vom: 08. Feb., Seite 399-416</subfield><subfield code="w">(DE-627)131007963</subfield><subfield code="w">(DE-600)1087487-2</subfield><subfield code="w">(DE-576)052732894</subfield><subfield code="x">0960-3174</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:3</subfield><subfield code="g">day:08</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:399-416</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11222-013-9377-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2013</subfield><subfield code="e">3</subfield><subfield code="b">08</subfield><subfield code="c">02</subfield><subfield code="h">399-416</subfield></datafield></record></collection>
|
score |
7.3999977 |