A categorical approach to polyadic algebras
Abstract It is shown that a locally finite polyadic algebra on an infinite set V of variables is a Boolean-algebra object, endowed with some internal supremum morphism, in the category of locally finite transformation sets on V. Then, this new categorical definition of polyadic algebras is used to s...
Ausführliche Beschreibung
Autor*in: |
Ouellet, Roch [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1982 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© Polish Academy of Sciences 1982 |
---|
Übergeordnetes Werk: |
Enthalten in: Studia logica - Kluwer Academic Publishers, 1953, 41(1982), 4 vom: Dez., Seite 317-327 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:1982 ; number:4 ; month:12 ; pages:317-327 |
Links: |
---|
DOI / URN: |
10.1007/BF00403331 |
---|
Katalog-ID: |
OLC2033907090 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033907090 | ||
003 | DE-627 | ||
005 | 20230504053335.0 | ||
007 | tu | ||
008 | 200819s1982 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00403331 |2 doi | |
035 | |a (DE-627)OLC2033907090 | ||
035 | |a (DE-He213)BF00403331-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 000 |a 100 |q VZ |
084 | |a 5,1 |a 17,1 |2 ssgn | ||
084 | |a PHILOS |q DE-12 |2 fid | ||
084 | |a LING |q DE-30 |2 fid | ||
084 | |a SA 8098 |q VZ |2 rvk | ||
084 | |a SA 8098 |q VZ |2 rvk | ||
084 | |a SA 8098 |a CA 1000 |q VZ |2 rvk | ||
100 | 1 | |a Ouellet, Roch |e verfasserin |4 aut | |
245 | 1 | 0 | |a A categorical approach to polyadic algebras |
264 | 1 | |c 1982 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Polish Academy of Sciences 1982 | ||
520 | |a Abstract It is shown that a locally finite polyadic algebra on an infinite set V of variables is a Boolean-algebra object, endowed with some internal supremum morphism, in the category of locally finite transformation sets on V. Then, this new categorical definition of polyadic algebras is used to simplify the theory of these algebras. Two examples are given: the construction of dilatations and the definition of terms and constants. | ||
650 | 4 | |a Mathematical Logic | |
650 | 4 | |a Computational Linguistic | |
650 | 4 | |a Categorical Approach | |
650 | 4 | |a Categorical Definition | |
650 | 4 | |a Finite Transformation | |
773 | 0 | 8 | |i Enthalten in |t Studia logica |d Kluwer Academic Publishers, 1953 |g 41(1982), 4 vom: Dez., Seite 317-327 |w (DE-627)129086916 |w (DE-600)4997-9 |w (DE-576)014421186 |x 0039-3215 |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:1982 |g number:4 |g month:12 |g pages:317-327 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00403331 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-PHILOS | ||
912 | |a FID-LING | ||
912 | |a SSG-OLC-PHI | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4103 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
936 | r | v | |a SA 8098 |
936 | r | v | |a SA 8098 |
936 | r | v | |a SA 8098 |
951 | |a AR | ||
952 | |d 41 |j 1982 |e 4 |c 12 |h 317-327 |
author_variant |
r o ro |
---|---|
matchkey_str |
article:00393215:1982----::ctgrclprahooy |
hierarchy_sort_str |
1982 |
publishDate |
1982 |
allfields |
10.1007/BF00403331 doi (DE-627)OLC2033907090 (DE-He213)BF00403331-p DE-627 ger DE-627 rakwb eng 000 100 VZ 5,1 17,1 ssgn PHILOS DE-12 fid LING DE-30 fid SA 8098 VZ rvk SA 8098 VZ rvk SA 8098 CA 1000 VZ rvk Ouellet, Roch verfasserin aut A categorical approach to polyadic algebras 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Polish Academy of Sciences 1982 Abstract It is shown that a locally finite polyadic algebra on an infinite set V of variables is a Boolean-algebra object, endowed with some internal supremum morphism, in the category of locally finite transformation sets on V. Then, this new categorical definition of polyadic algebras is used to simplify the theory of these algebras. Two examples are given: the construction of dilatations and the definition of terms and constants. Mathematical Logic Computational Linguistic Categorical Approach Categorical Definition Finite Transformation Enthalten in Studia logica Kluwer Academic Publishers, 1953 41(1982), 4 vom: Dez., Seite 317-327 (DE-627)129086916 (DE-600)4997-9 (DE-576)014421186 0039-3215 nnns volume:41 year:1982 number:4 month:12 pages:317-327 https://doi.org/10.1007/BF00403331 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-PHILOS FID-LING SSG-OLC-PHI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 SA 8098 SA 8098 SA 8098 AR 41 1982 4 12 317-327 |
spelling |
10.1007/BF00403331 doi (DE-627)OLC2033907090 (DE-He213)BF00403331-p DE-627 ger DE-627 rakwb eng 000 100 VZ 5,1 17,1 ssgn PHILOS DE-12 fid LING DE-30 fid SA 8098 VZ rvk SA 8098 VZ rvk SA 8098 CA 1000 VZ rvk Ouellet, Roch verfasserin aut A categorical approach to polyadic algebras 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Polish Academy of Sciences 1982 Abstract It is shown that a locally finite polyadic algebra on an infinite set V of variables is a Boolean-algebra object, endowed with some internal supremum morphism, in the category of locally finite transformation sets on V. Then, this new categorical definition of polyadic algebras is used to simplify the theory of these algebras. Two examples are given: the construction of dilatations and the definition of terms and constants. Mathematical Logic Computational Linguistic Categorical Approach Categorical Definition Finite Transformation Enthalten in Studia logica Kluwer Academic Publishers, 1953 41(1982), 4 vom: Dez., Seite 317-327 (DE-627)129086916 (DE-600)4997-9 (DE-576)014421186 0039-3215 nnns volume:41 year:1982 number:4 month:12 pages:317-327 https://doi.org/10.1007/BF00403331 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-PHILOS FID-LING SSG-OLC-PHI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 SA 8098 SA 8098 SA 8098 AR 41 1982 4 12 317-327 |
allfields_unstemmed |
10.1007/BF00403331 doi (DE-627)OLC2033907090 (DE-He213)BF00403331-p DE-627 ger DE-627 rakwb eng 000 100 VZ 5,1 17,1 ssgn PHILOS DE-12 fid LING DE-30 fid SA 8098 VZ rvk SA 8098 VZ rvk SA 8098 CA 1000 VZ rvk Ouellet, Roch verfasserin aut A categorical approach to polyadic algebras 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Polish Academy of Sciences 1982 Abstract It is shown that a locally finite polyadic algebra on an infinite set V of variables is a Boolean-algebra object, endowed with some internal supremum morphism, in the category of locally finite transformation sets on V. Then, this new categorical definition of polyadic algebras is used to simplify the theory of these algebras. Two examples are given: the construction of dilatations and the definition of terms and constants. Mathematical Logic Computational Linguistic Categorical Approach Categorical Definition Finite Transformation Enthalten in Studia logica Kluwer Academic Publishers, 1953 41(1982), 4 vom: Dez., Seite 317-327 (DE-627)129086916 (DE-600)4997-9 (DE-576)014421186 0039-3215 nnns volume:41 year:1982 number:4 month:12 pages:317-327 https://doi.org/10.1007/BF00403331 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-PHILOS FID-LING SSG-OLC-PHI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 SA 8098 SA 8098 SA 8098 AR 41 1982 4 12 317-327 |
allfieldsGer |
10.1007/BF00403331 doi (DE-627)OLC2033907090 (DE-He213)BF00403331-p DE-627 ger DE-627 rakwb eng 000 100 VZ 5,1 17,1 ssgn PHILOS DE-12 fid LING DE-30 fid SA 8098 VZ rvk SA 8098 VZ rvk SA 8098 CA 1000 VZ rvk Ouellet, Roch verfasserin aut A categorical approach to polyadic algebras 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Polish Academy of Sciences 1982 Abstract It is shown that a locally finite polyadic algebra on an infinite set V of variables is a Boolean-algebra object, endowed with some internal supremum morphism, in the category of locally finite transformation sets on V. Then, this new categorical definition of polyadic algebras is used to simplify the theory of these algebras. Two examples are given: the construction of dilatations and the definition of terms and constants. Mathematical Logic Computational Linguistic Categorical Approach Categorical Definition Finite Transformation Enthalten in Studia logica Kluwer Academic Publishers, 1953 41(1982), 4 vom: Dez., Seite 317-327 (DE-627)129086916 (DE-600)4997-9 (DE-576)014421186 0039-3215 nnns volume:41 year:1982 number:4 month:12 pages:317-327 https://doi.org/10.1007/BF00403331 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-PHILOS FID-LING SSG-OLC-PHI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 SA 8098 SA 8098 SA 8098 AR 41 1982 4 12 317-327 |
allfieldsSound |
10.1007/BF00403331 doi (DE-627)OLC2033907090 (DE-He213)BF00403331-p DE-627 ger DE-627 rakwb eng 000 100 VZ 5,1 17,1 ssgn PHILOS DE-12 fid LING DE-30 fid SA 8098 VZ rvk SA 8098 VZ rvk SA 8098 CA 1000 VZ rvk Ouellet, Roch verfasserin aut A categorical approach to polyadic algebras 1982 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Polish Academy of Sciences 1982 Abstract It is shown that a locally finite polyadic algebra on an infinite set V of variables is a Boolean-algebra object, endowed with some internal supremum morphism, in the category of locally finite transformation sets on V. Then, this new categorical definition of polyadic algebras is used to simplify the theory of these algebras. Two examples are given: the construction of dilatations and the definition of terms and constants. Mathematical Logic Computational Linguistic Categorical Approach Categorical Definition Finite Transformation Enthalten in Studia logica Kluwer Academic Publishers, 1953 41(1982), 4 vom: Dez., Seite 317-327 (DE-627)129086916 (DE-600)4997-9 (DE-576)014421186 0039-3215 nnns volume:41 year:1982 number:4 month:12 pages:317-327 https://doi.org/10.1007/BF00403331 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-PHILOS FID-LING SSG-OLC-PHI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 SA 8098 SA 8098 SA 8098 AR 41 1982 4 12 317-327 |
language |
English |
source |
Enthalten in Studia logica 41(1982), 4 vom: Dez., Seite 317-327 volume:41 year:1982 number:4 month:12 pages:317-327 |
sourceStr |
Enthalten in Studia logica 41(1982), 4 vom: Dez., Seite 317-327 volume:41 year:1982 number:4 month:12 pages:317-327 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mathematical Logic Computational Linguistic Categorical Approach Categorical Definition Finite Transformation |
dewey-raw |
000 |
isfreeaccess_bool |
false |
container_title |
Studia logica |
authorswithroles_txt_mv |
Ouellet, Roch @@aut@@ |
publishDateDaySort_date |
1982-12-01T00:00:00Z |
hierarchy_top_id |
129086916 |
dewey-sort |
0 |
id |
OLC2033907090 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033907090</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504053335.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1982 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00403331</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033907090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00403331-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="a">100</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,1</subfield><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHILOS</subfield><subfield code="q">DE-12</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 8098</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 8098</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 8098</subfield><subfield code="a">CA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ouellet, Roch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A categorical approach to polyadic algebras</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1982</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Polish Academy of Sciences 1982</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is shown that a locally finite polyadic algebra on an infinite set V of variables is a Boolean-algebra object, endowed with some internal supremum morphism, in the category of locally finite transformation sets on V. Then, this new categorical definition of polyadic algebras is used to simplify the theory of these algebras. Two examples are given: the construction of dilatations and the definition of terms and constants.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Linguistic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categorical Approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categorical Definition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite Transformation</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Studia logica</subfield><subfield code="d">Kluwer Academic Publishers, 1953</subfield><subfield code="g">41(1982), 4 vom: Dez., Seite 317-327</subfield><subfield code="w">(DE-627)129086916</subfield><subfield code="w">(DE-600)4997-9</subfield><subfield code="w">(DE-576)014421186</subfield><subfield code="x">0039-3215</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:1982</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:317-327</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00403331</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHILOS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 8098</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 8098</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 8098</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">1982</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">317-327</subfield></datafield></record></collection>
|
author |
Ouellet, Roch |
spellingShingle |
Ouellet, Roch ddc 000 ssgn 5,1 fid PHILOS fid LING rvk SA 8098 misc Mathematical Logic misc Computational Linguistic misc Categorical Approach misc Categorical Definition misc Finite Transformation A categorical approach to polyadic algebras |
authorStr |
Ouellet, Roch |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129086916 |
format |
Article |
dewey-ones |
000 - Computer science, information & general works 100 - Philosophy & psychology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0039-3215 |
topic_title |
000 100 VZ 5,1 17,1 ssgn PHILOS DE-12 fid LING DE-30 fid SA 8098 VZ rvk SA 8098 CA 1000 VZ rvk A categorical approach to polyadic algebras Mathematical Logic Computational Linguistic Categorical Approach Categorical Definition Finite Transformation |
topic |
ddc 000 ssgn 5,1 fid PHILOS fid LING rvk SA 8098 misc Mathematical Logic misc Computational Linguistic misc Categorical Approach misc Categorical Definition misc Finite Transformation |
topic_unstemmed |
ddc 000 ssgn 5,1 fid PHILOS fid LING rvk SA 8098 misc Mathematical Logic misc Computational Linguistic misc Categorical Approach misc Categorical Definition misc Finite Transformation |
topic_browse |
ddc 000 ssgn 5,1 fid PHILOS fid LING rvk SA 8098 misc Mathematical Logic misc Computational Linguistic misc Categorical Approach misc Categorical Definition misc Finite Transformation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Studia logica |
hierarchy_parent_id |
129086916 |
dewey-tens |
000 - Computer science, knowledge & systems 100 - Philosophy |
hierarchy_top_title |
Studia logica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129086916 (DE-600)4997-9 (DE-576)014421186 |
title |
A categorical approach to polyadic algebras |
ctrlnum |
(DE-627)OLC2033907090 (DE-He213)BF00403331-p |
title_full |
A categorical approach to polyadic algebras |
author_sort |
Ouellet, Roch |
journal |
Studia logica |
journalStr |
Studia logica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 100 - Philosophy & psychology |
recordtype |
marc |
publishDateSort |
1982 |
contenttype_str_mv |
txt |
container_start_page |
317 |
author_browse |
Ouellet, Roch |
container_volume |
41 |
class |
000 100 VZ 5,1 17,1 ssgn PHILOS DE-12 fid LING DE-30 fid SA 8098 VZ rvk SA 8098 CA 1000 VZ rvk |
format_se |
Aufsätze |
author-letter |
Ouellet, Roch |
doi_str_mv |
10.1007/BF00403331 |
dewey-full |
000 100 |
title_sort |
a categorical approach to polyadic algebras |
title_auth |
A categorical approach to polyadic algebras |
abstract |
Abstract It is shown that a locally finite polyadic algebra on an infinite set V of variables is a Boolean-algebra object, endowed with some internal supremum morphism, in the category of locally finite transformation sets on V. Then, this new categorical definition of polyadic algebras is used to simplify the theory of these algebras. Two examples are given: the construction of dilatations and the definition of terms and constants. © Polish Academy of Sciences 1982 |
abstractGer |
Abstract It is shown that a locally finite polyadic algebra on an infinite set V of variables is a Boolean-algebra object, endowed with some internal supremum morphism, in the category of locally finite transformation sets on V. Then, this new categorical definition of polyadic algebras is used to simplify the theory of these algebras. Two examples are given: the construction of dilatations and the definition of terms and constants. © Polish Academy of Sciences 1982 |
abstract_unstemmed |
Abstract It is shown that a locally finite polyadic algebra on an infinite set V of variables is a Boolean-algebra object, endowed with some internal supremum morphism, in the category of locally finite transformation sets on V. Then, this new categorical definition of polyadic algebras is used to simplify the theory of these algebras. Two examples are given: the construction of dilatations and the definition of terms and constants. © Polish Academy of Sciences 1982 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-PHILOS FID-LING SSG-OLC-PHI SSG-OPC-MAT GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_130 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2007 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2012 GBV_ILN_2088 GBV_ILN_4012 GBV_ILN_4027 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4082 GBV_ILN_4103 GBV_ILN_4112 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 |
container_issue |
4 |
title_short |
A categorical approach to polyadic algebras |
url |
https://doi.org/10.1007/BF00403331 |
remote_bool |
false |
ppnlink |
129086916 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00403331 |
up_date |
2024-07-03T18:51:26.287Z |
_version_ |
1803584994056077313 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033907090</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504053335.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1982 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00403331</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033907090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00403331-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="a">100</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,1</subfield><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHILOS</subfield><subfield code="q">DE-12</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 8098</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 8098</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 8098</subfield><subfield code="a">CA 1000</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ouellet, Roch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A categorical approach to polyadic algebras</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1982</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Polish Academy of Sciences 1982</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is shown that a locally finite polyadic algebra on an infinite set V of variables is a Boolean-algebra object, endowed with some internal supremum morphism, in the category of locally finite transformation sets on V. Then, this new categorical definition of polyadic algebras is used to simplify the theory of these algebras. Two examples are given: the construction of dilatations and the definition of terms and constants.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Linguistic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categorical Approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Categorical Definition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite Transformation</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Studia logica</subfield><subfield code="d">Kluwer Academic Publishers, 1953</subfield><subfield code="g">41(1982), 4 vom: Dez., Seite 317-327</subfield><subfield code="w">(DE-627)129086916</subfield><subfield code="w">(DE-600)4997-9</subfield><subfield code="w">(DE-576)014421186</subfield><subfield code="x">0039-3215</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:1982</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:317-327</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00403331</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHILOS</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4103</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 8098</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 8098</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 8098</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">1982</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">317-327</subfield></datafield></record></collection>
|
score |
7.4030848 |