A rough set-based hypergraph trust measure parameter selection technique for cloud service selection
Abstract Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on the...
Ausführliche Beschreibung
Autor*in: |
Somu, Nivethitha [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
Cloud service providers (CSPs) |
---|
Anmerkung: |
© Springer Science+Business Media New York 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: The journal of supercomputing - Springer US, 1987, 73(2017), 10 vom: 12. Apr., Seite 4535-4559 |
---|---|
Übergeordnetes Werk: |
volume:73 ; year:2017 ; number:10 ; day:12 ; month:04 ; pages:4535-4559 |
Links: |
---|
DOI / URN: |
10.1007/s11227-017-2032-8 |
---|
Katalog-ID: |
OLC2033953041 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033953041 | ||
003 | DE-627 | ||
005 | 20230504053929.0 | ||
007 | tu | ||
008 | 200819s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11227-017-2032-8 |2 doi | |
035 | |a (DE-627)OLC2033953041 | ||
035 | |a (DE-He213)s11227-017-2032-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q VZ |
100 | 1 | |a Somu, Nivethitha |e verfasserin |4 aut | |
245 | 1 | 0 | |a A rough set-based hypergraph trust measure parameter selection technique for cloud service selection |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2017 | ||
520 | |a Abstract Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on their unique quality of service (QoS) requirements. A generic solution to the problem of cloud service selection can be formulated in terms of trust assessment. However, the accuracy of the trust value depends on the optimality of the service-specific trust measure parameters (TMPs) subset. This paper presents TrustCom—a novel trust assessment framework and rough set-based hypergraph technique (RSHT) for the identification of the optimal TMP subset. Experiments using Cloud Armor and synthetic trust feedback datasets show the prominence of RSHT over the existing feature selection techniques. The performance of RSHT was analyzed using Weka tool and hypergraph-based computational model with respect to the reduct size, time complexity and service ranking. | ||
650 | 4 | |a Cloud service providers (CSPs) | |
650 | 4 | |a Cloud users (CUs) | |
650 | 4 | |a Trust measure parameters (TMPs) | |
650 | 4 | |a Rough set theory (RST) | |
650 | 4 | |a Hypergraph | |
650 | 4 | |a Hypergraph-based computational model (HGCM) | |
700 | 1 | |a Kirthivasan, Kannan |4 aut | |
700 | 1 | |a Shankar Sriram, V. S. |0 (orcid)0000-0001-7870-7944 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The journal of supercomputing |d Springer US, 1987 |g 73(2017), 10 vom: 12. Apr., Seite 4535-4559 |w (DE-627)13046466X |w (DE-600)740510-8 |w (DE-576)018667775 |x 0920-8542 |7 nnns |
773 | 1 | 8 | |g volume:73 |g year:2017 |g number:10 |g day:12 |g month:04 |g pages:4535-4559 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11227-017-2032-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 73 |j 2017 |e 10 |b 12 |c 04 |h 4535-4559 |
author_variant |
n s ns k k kk s v s s svs svss |
---|---|
matchkey_str |
article:09208542:2017----::ruhebsdyegahrsmaueaaeeslcinehiu |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s11227-017-2032-8 doi (DE-627)OLC2033953041 (DE-He213)s11227-017-2032-8-p DE-627 ger DE-627 rakwb eng 004 620 VZ Somu, Nivethitha verfasserin aut A rough set-based hypergraph trust measure parameter selection technique for cloud service selection 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on their unique quality of service (QoS) requirements. A generic solution to the problem of cloud service selection can be formulated in terms of trust assessment. However, the accuracy of the trust value depends on the optimality of the service-specific trust measure parameters (TMPs) subset. This paper presents TrustCom—a novel trust assessment framework and rough set-based hypergraph technique (RSHT) for the identification of the optimal TMP subset. Experiments using Cloud Armor and synthetic trust feedback datasets show the prominence of RSHT over the existing feature selection techniques. The performance of RSHT was analyzed using Weka tool and hypergraph-based computational model with respect to the reduct size, time complexity and service ranking. Cloud service providers (CSPs) Cloud users (CUs) Trust measure parameters (TMPs) Rough set theory (RST) Hypergraph Hypergraph-based computational model (HGCM) Kirthivasan, Kannan aut Shankar Sriram, V. S. (orcid)0000-0001-7870-7944 aut Enthalten in The journal of supercomputing Springer US, 1987 73(2017), 10 vom: 12. Apr., Seite 4535-4559 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:73 year:2017 number:10 day:12 month:04 pages:4535-4559 https://doi.org/10.1007/s11227-017-2032-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 73 2017 10 12 04 4535-4559 |
spelling |
10.1007/s11227-017-2032-8 doi (DE-627)OLC2033953041 (DE-He213)s11227-017-2032-8-p DE-627 ger DE-627 rakwb eng 004 620 VZ Somu, Nivethitha verfasserin aut A rough set-based hypergraph trust measure parameter selection technique for cloud service selection 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on their unique quality of service (QoS) requirements. A generic solution to the problem of cloud service selection can be formulated in terms of trust assessment. However, the accuracy of the trust value depends on the optimality of the service-specific trust measure parameters (TMPs) subset. This paper presents TrustCom—a novel trust assessment framework and rough set-based hypergraph technique (RSHT) for the identification of the optimal TMP subset. Experiments using Cloud Armor and synthetic trust feedback datasets show the prominence of RSHT over the existing feature selection techniques. The performance of RSHT was analyzed using Weka tool and hypergraph-based computational model with respect to the reduct size, time complexity and service ranking. Cloud service providers (CSPs) Cloud users (CUs) Trust measure parameters (TMPs) Rough set theory (RST) Hypergraph Hypergraph-based computational model (HGCM) Kirthivasan, Kannan aut Shankar Sriram, V. S. (orcid)0000-0001-7870-7944 aut Enthalten in The journal of supercomputing Springer US, 1987 73(2017), 10 vom: 12. Apr., Seite 4535-4559 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:73 year:2017 number:10 day:12 month:04 pages:4535-4559 https://doi.org/10.1007/s11227-017-2032-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 73 2017 10 12 04 4535-4559 |
allfields_unstemmed |
10.1007/s11227-017-2032-8 doi (DE-627)OLC2033953041 (DE-He213)s11227-017-2032-8-p DE-627 ger DE-627 rakwb eng 004 620 VZ Somu, Nivethitha verfasserin aut A rough set-based hypergraph trust measure parameter selection technique for cloud service selection 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on their unique quality of service (QoS) requirements. A generic solution to the problem of cloud service selection can be formulated in terms of trust assessment. However, the accuracy of the trust value depends on the optimality of the service-specific trust measure parameters (TMPs) subset. This paper presents TrustCom—a novel trust assessment framework and rough set-based hypergraph technique (RSHT) for the identification of the optimal TMP subset. Experiments using Cloud Armor and synthetic trust feedback datasets show the prominence of RSHT over the existing feature selection techniques. The performance of RSHT was analyzed using Weka tool and hypergraph-based computational model with respect to the reduct size, time complexity and service ranking. Cloud service providers (CSPs) Cloud users (CUs) Trust measure parameters (TMPs) Rough set theory (RST) Hypergraph Hypergraph-based computational model (HGCM) Kirthivasan, Kannan aut Shankar Sriram, V. S. (orcid)0000-0001-7870-7944 aut Enthalten in The journal of supercomputing Springer US, 1987 73(2017), 10 vom: 12. Apr., Seite 4535-4559 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:73 year:2017 number:10 day:12 month:04 pages:4535-4559 https://doi.org/10.1007/s11227-017-2032-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 73 2017 10 12 04 4535-4559 |
allfieldsGer |
10.1007/s11227-017-2032-8 doi (DE-627)OLC2033953041 (DE-He213)s11227-017-2032-8-p DE-627 ger DE-627 rakwb eng 004 620 VZ Somu, Nivethitha verfasserin aut A rough set-based hypergraph trust measure parameter selection technique for cloud service selection 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on their unique quality of service (QoS) requirements. A generic solution to the problem of cloud service selection can be formulated in terms of trust assessment. However, the accuracy of the trust value depends on the optimality of the service-specific trust measure parameters (TMPs) subset. This paper presents TrustCom—a novel trust assessment framework and rough set-based hypergraph technique (RSHT) for the identification of the optimal TMP subset. Experiments using Cloud Armor and synthetic trust feedback datasets show the prominence of RSHT over the existing feature selection techniques. The performance of RSHT was analyzed using Weka tool and hypergraph-based computational model with respect to the reduct size, time complexity and service ranking. Cloud service providers (CSPs) Cloud users (CUs) Trust measure parameters (TMPs) Rough set theory (RST) Hypergraph Hypergraph-based computational model (HGCM) Kirthivasan, Kannan aut Shankar Sriram, V. S. (orcid)0000-0001-7870-7944 aut Enthalten in The journal of supercomputing Springer US, 1987 73(2017), 10 vom: 12. Apr., Seite 4535-4559 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:73 year:2017 number:10 day:12 month:04 pages:4535-4559 https://doi.org/10.1007/s11227-017-2032-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 73 2017 10 12 04 4535-4559 |
allfieldsSound |
10.1007/s11227-017-2032-8 doi (DE-627)OLC2033953041 (DE-He213)s11227-017-2032-8-p DE-627 ger DE-627 rakwb eng 004 620 VZ Somu, Nivethitha verfasserin aut A rough set-based hypergraph trust measure parameter selection technique for cloud service selection 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2017 Abstract Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on their unique quality of service (QoS) requirements. A generic solution to the problem of cloud service selection can be formulated in terms of trust assessment. However, the accuracy of the trust value depends on the optimality of the service-specific trust measure parameters (TMPs) subset. This paper presents TrustCom—a novel trust assessment framework and rough set-based hypergraph technique (RSHT) for the identification of the optimal TMP subset. Experiments using Cloud Armor and synthetic trust feedback datasets show the prominence of RSHT over the existing feature selection techniques. The performance of RSHT was analyzed using Weka tool and hypergraph-based computational model with respect to the reduct size, time complexity and service ranking. Cloud service providers (CSPs) Cloud users (CUs) Trust measure parameters (TMPs) Rough set theory (RST) Hypergraph Hypergraph-based computational model (HGCM) Kirthivasan, Kannan aut Shankar Sriram, V. S. (orcid)0000-0001-7870-7944 aut Enthalten in The journal of supercomputing Springer US, 1987 73(2017), 10 vom: 12. Apr., Seite 4535-4559 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:73 year:2017 number:10 day:12 month:04 pages:4535-4559 https://doi.org/10.1007/s11227-017-2032-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 73 2017 10 12 04 4535-4559 |
language |
English |
source |
Enthalten in The journal of supercomputing 73(2017), 10 vom: 12. Apr., Seite 4535-4559 volume:73 year:2017 number:10 day:12 month:04 pages:4535-4559 |
sourceStr |
Enthalten in The journal of supercomputing 73(2017), 10 vom: 12. Apr., Seite 4535-4559 volume:73 year:2017 number:10 day:12 month:04 pages:4535-4559 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cloud service providers (CSPs) Cloud users (CUs) Trust measure parameters (TMPs) Rough set theory (RST) Hypergraph Hypergraph-based computational model (HGCM) |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
The journal of supercomputing |
authorswithroles_txt_mv |
Somu, Nivethitha @@aut@@ Kirthivasan, Kannan @@aut@@ Shankar Sriram, V. S. @@aut@@ |
publishDateDaySort_date |
2017-04-12T00:00:00Z |
hierarchy_top_id |
13046466X |
dewey-sort |
14 |
id |
OLC2033953041 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033953041</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504053929.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11227-017-2032-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033953041</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11227-017-2032-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Somu, Nivethitha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A rough set-based hypergraph trust measure parameter selection technique for cloud service selection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on their unique quality of service (QoS) requirements. A generic solution to the problem of cloud service selection can be formulated in terms of trust assessment. However, the accuracy of the trust value depends on the optimality of the service-specific trust measure parameters (TMPs) subset. This paper presents TrustCom—a novel trust assessment framework and rough set-based hypergraph technique (RSHT) for the identification of the optimal TMP subset. Experiments using Cloud Armor and synthetic trust feedback datasets show the prominence of RSHT over the existing feature selection techniques. The performance of RSHT was analyzed using Weka tool and hypergraph-based computational model with respect to the reduct size, time complexity and service ranking.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud service providers (CSPs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud users (CUs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trust measure parameters (TMPs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rough set theory (RST)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergraph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergraph-based computational model (HGCM)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirthivasan, Kannan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shankar Sriram, V. S.</subfield><subfield code="0">(orcid)0000-0001-7870-7944</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of supercomputing</subfield><subfield code="d">Springer US, 1987</subfield><subfield code="g">73(2017), 10 vom: 12. Apr., Seite 4535-4559</subfield><subfield code="w">(DE-627)13046466X</subfield><subfield code="w">(DE-600)740510-8</subfield><subfield code="w">(DE-576)018667775</subfield><subfield code="x">0920-8542</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">day:12</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:4535-4559</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11227-017-2032-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="b">12</subfield><subfield code="c">04</subfield><subfield code="h">4535-4559</subfield></datafield></record></collection>
|
author |
Somu, Nivethitha |
spellingShingle |
Somu, Nivethitha ddc 004 misc Cloud service providers (CSPs) misc Cloud users (CUs) misc Trust measure parameters (TMPs) misc Rough set theory (RST) misc Hypergraph misc Hypergraph-based computational model (HGCM) A rough set-based hypergraph trust measure parameter selection technique for cloud service selection |
authorStr |
Somu, Nivethitha |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13046466X |
format |
Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0920-8542 |
topic_title |
004 620 VZ A rough set-based hypergraph trust measure parameter selection technique for cloud service selection Cloud service providers (CSPs) Cloud users (CUs) Trust measure parameters (TMPs) Rough set theory (RST) Hypergraph Hypergraph-based computational model (HGCM) |
topic |
ddc 004 misc Cloud service providers (CSPs) misc Cloud users (CUs) misc Trust measure parameters (TMPs) misc Rough set theory (RST) misc Hypergraph misc Hypergraph-based computational model (HGCM) |
topic_unstemmed |
ddc 004 misc Cloud service providers (CSPs) misc Cloud users (CUs) misc Trust measure parameters (TMPs) misc Rough set theory (RST) misc Hypergraph misc Hypergraph-based computational model (HGCM) |
topic_browse |
ddc 004 misc Cloud service providers (CSPs) misc Cloud users (CUs) misc Trust measure parameters (TMPs) misc Rough set theory (RST) misc Hypergraph misc Hypergraph-based computational model (HGCM) |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The journal of supercomputing |
hierarchy_parent_id |
13046466X |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
The journal of supercomputing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 |
title |
A rough set-based hypergraph trust measure parameter selection technique for cloud service selection |
ctrlnum |
(DE-627)OLC2033953041 (DE-He213)s11227-017-2032-8-p |
title_full |
A rough set-based hypergraph trust measure parameter selection technique for cloud service selection |
author_sort |
Somu, Nivethitha |
journal |
The journal of supercomputing |
journalStr |
The journal of supercomputing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
4535 |
author_browse |
Somu, Nivethitha Kirthivasan, Kannan Shankar Sriram, V. S. |
container_volume |
73 |
class |
004 620 VZ |
format_se |
Aufsätze |
author-letter |
Somu, Nivethitha |
doi_str_mv |
10.1007/s11227-017-2032-8 |
normlink |
(ORCID)0000-0001-7870-7944 |
normlink_prefix_str_mv |
(orcid)0000-0001-7870-7944 |
dewey-full |
004 620 |
title_sort |
a rough set-based hypergraph trust measure parameter selection technique for cloud service selection |
title_auth |
A rough set-based hypergraph trust measure parameter selection technique for cloud service selection |
abstract |
Abstract Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on their unique quality of service (QoS) requirements. A generic solution to the problem of cloud service selection can be formulated in terms of trust assessment. However, the accuracy of the trust value depends on the optimality of the service-specific trust measure parameters (TMPs) subset. This paper presents TrustCom—a novel trust assessment framework and rough set-based hypergraph technique (RSHT) for the identification of the optimal TMP subset. Experiments using Cloud Armor and synthetic trust feedback datasets show the prominence of RSHT over the existing feature selection techniques. The performance of RSHT was analyzed using Weka tool and hypergraph-based computational model with respect to the reduct size, time complexity and service ranking. © Springer Science+Business Media New York 2017 |
abstractGer |
Abstract Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on their unique quality of service (QoS) requirements. A generic solution to the problem of cloud service selection can be formulated in terms of trust assessment. However, the accuracy of the trust value depends on the optimality of the service-specific trust measure parameters (TMPs) subset. This paper presents TrustCom—a novel trust assessment framework and rough set-based hypergraph technique (RSHT) for the identification of the optimal TMP subset. Experiments using Cloud Armor and synthetic trust feedback datasets show the prominence of RSHT over the existing feature selection techniques. The performance of RSHT was analyzed using Weka tool and hypergraph-based computational model with respect to the reduct size, time complexity and service ranking. © Springer Science+Business Media New York 2017 |
abstract_unstemmed |
Abstract Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on their unique quality of service (QoS) requirements. A generic solution to the problem of cloud service selection can be formulated in terms of trust assessment. However, the accuracy of the trust value depends on the optimality of the service-specific trust measure parameters (TMPs) subset. This paper presents TrustCom—a novel trust assessment framework and rough set-based hypergraph technique (RSHT) for the identification of the optimal TMP subset. Experiments using Cloud Armor and synthetic trust feedback datasets show the prominence of RSHT over the existing feature selection techniques. The performance of RSHT was analyzed using Weka tool and hypergraph-based computational model with respect to the reduct size, time complexity and service ranking. © Springer Science+Business Media New York 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
10 |
title_short |
A rough set-based hypergraph trust measure parameter selection technique for cloud service selection |
url |
https://doi.org/10.1007/s11227-017-2032-8 |
remote_bool |
false |
author2 |
Kirthivasan, Kannan Shankar Sriram, V. S. |
author2Str |
Kirthivasan, Kannan Shankar Sriram, V. S. |
ppnlink |
13046466X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11227-017-2032-8 |
up_date |
2024-07-03T19:03:13.385Z |
_version_ |
1803585735510458368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033953041</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504053929.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11227-017-2032-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033953041</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11227-017-2032-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Somu, Nivethitha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A rough set-based hypergraph trust measure parameter selection technique for cloud service selection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Selection of trustworthy cloud services has been a major research challenge in cloud computing, due to the proliferation of numerous cloud service providers (CSPs) along every dimension of computing. This scenario makes it hard for the cloud users to identify an appropriate CSP based on their unique quality of service (QoS) requirements. A generic solution to the problem of cloud service selection can be formulated in terms of trust assessment. However, the accuracy of the trust value depends on the optimality of the service-specific trust measure parameters (TMPs) subset. This paper presents TrustCom—a novel trust assessment framework and rough set-based hypergraph technique (RSHT) for the identification of the optimal TMP subset. Experiments using Cloud Armor and synthetic trust feedback datasets show the prominence of RSHT over the existing feature selection techniques. The performance of RSHT was analyzed using Weka tool and hypergraph-based computational model with respect to the reduct size, time complexity and service ranking.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud service providers (CSPs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud users (CUs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trust measure parameters (TMPs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rough set theory (RST)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergraph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergraph-based computational model (HGCM)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirthivasan, Kannan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shankar Sriram, V. S.</subfield><subfield code="0">(orcid)0000-0001-7870-7944</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of supercomputing</subfield><subfield code="d">Springer US, 1987</subfield><subfield code="g">73(2017), 10 vom: 12. Apr., Seite 4535-4559</subfield><subfield code="w">(DE-627)13046466X</subfield><subfield code="w">(DE-600)740510-8</subfield><subfield code="w">(DE-576)018667775</subfield><subfield code="x">0920-8542</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:73</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">day:12</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:4535-4559</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11227-017-2032-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">73</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="b">12</subfield><subfield code="c">04</subfield><subfield code="h">4535-4559</subfield></datafield></record></collection>
|
score |
7.401513 |