One-to-one disjoint path covers in hypercubes with faulty edges
Abstract A one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edge...
Ausführliche Beschreibung
Autor*in: |
Wang, Fan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: The journal of supercomputing - Springer US, 1987, 75(2019), 8 vom: 20. März, Seite 5583-5595 |
---|---|
Übergeordnetes Werk: |
volume:75 ; year:2019 ; number:8 ; day:20 ; month:03 ; pages:5583-5595 |
Links: |
---|
DOI / URN: |
10.1007/s11227-019-02817-6 |
---|
Katalog-ID: |
OLC2033959120 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2033959120 | ||
003 | DE-627 | ||
005 | 20230504054059.0 | ||
007 | tu | ||
008 | 200819s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11227-019-02817-6 |2 doi | |
035 | |a (DE-627)OLC2033959120 | ||
035 | |a (DE-He213)s11227-019-02817-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q VZ |
100 | 1 | |a Wang, Fan |e verfasserin |0 (orcid)0000-0002-5879-8399 |4 aut | |
245 | 1 | 0 | |a One-to-one disjoint path covers in hypercubes with faulty edges |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2019 | ||
520 | |a Abstract A one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that $$p(u)\ne p(v)$$ and $$1\le k\le n$$. Then there exists a one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ joining vertices u and v in $$Q_n$$. Moreover, when $$1\le k\le n-2$$, the result still holds even if removing $$n-2-k$$ edges from $$Q_n$$. | ||
650 | 4 | |a Hypercubes | |
650 | 4 | |a Vertex disjoint paths | |
650 | 4 | |a Path covers | |
650 | 4 | |a One-to-one | |
650 | 4 | |a Fault edges | |
700 | 1 | |a Zhao, Weisheng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The journal of supercomputing |d Springer US, 1987 |g 75(2019), 8 vom: 20. März, Seite 5583-5595 |w (DE-627)13046466X |w (DE-600)740510-8 |w (DE-576)018667775 |x 0920-8542 |7 nnns |
773 | 1 | 8 | |g volume:75 |g year:2019 |g number:8 |g day:20 |g month:03 |g pages:5583-5595 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11227-019-02817-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 75 |j 2019 |e 8 |b 20 |c 03 |h 5583-5595 |
author_variant |
f w fw w z wz |
---|---|
matchkey_str |
article:09208542:2019----::ntoeijitahoesnyecbs |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s11227-019-02817-6 doi (DE-627)OLC2033959120 (DE-He213)s11227-019-02817-6-p DE-627 ger DE-627 rakwb eng 004 620 VZ Wang, Fan verfasserin (orcid)0000-0002-5879-8399 aut One-to-one disjoint path covers in hypercubes with faulty edges 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract A one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that $$p(u)\ne p(v)$$ and $$1\le k\le n$$. Then there exists a one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ joining vertices u and v in $$Q_n$$. Moreover, when $$1\le k\le n-2$$, the result still holds even if removing $$n-2-k$$ edges from $$Q_n$$. Hypercubes Vertex disjoint paths Path covers One-to-one Fault edges Zhao, Weisheng aut Enthalten in The journal of supercomputing Springer US, 1987 75(2019), 8 vom: 20. März, Seite 5583-5595 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:75 year:2019 number:8 day:20 month:03 pages:5583-5595 https://doi.org/10.1007/s11227-019-02817-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 75 2019 8 20 03 5583-5595 |
spelling |
10.1007/s11227-019-02817-6 doi (DE-627)OLC2033959120 (DE-He213)s11227-019-02817-6-p DE-627 ger DE-627 rakwb eng 004 620 VZ Wang, Fan verfasserin (orcid)0000-0002-5879-8399 aut One-to-one disjoint path covers in hypercubes with faulty edges 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract A one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that $$p(u)\ne p(v)$$ and $$1\le k\le n$$. Then there exists a one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ joining vertices u and v in $$Q_n$$. Moreover, when $$1\le k\le n-2$$, the result still holds even if removing $$n-2-k$$ edges from $$Q_n$$. Hypercubes Vertex disjoint paths Path covers One-to-one Fault edges Zhao, Weisheng aut Enthalten in The journal of supercomputing Springer US, 1987 75(2019), 8 vom: 20. März, Seite 5583-5595 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:75 year:2019 number:8 day:20 month:03 pages:5583-5595 https://doi.org/10.1007/s11227-019-02817-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 75 2019 8 20 03 5583-5595 |
allfields_unstemmed |
10.1007/s11227-019-02817-6 doi (DE-627)OLC2033959120 (DE-He213)s11227-019-02817-6-p DE-627 ger DE-627 rakwb eng 004 620 VZ Wang, Fan verfasserin (orcid)0000-0002-5879-8399 aut One-to-one disjoint path covers in hypercubes with faulty edges 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract A one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that $$p(u)\ne p(v)$$ and $$1\le k\le n$$. Then there exists a one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ joining vertices u and v in $$Q_n$$. Moreover, when $$1\le k\le n-2$$, the result still holds even if removing $$n-2-k$$ edges from $$Q_n$$. Hypercubes Vertex disjoint paths Path covers One-to-one Fault edges Zhao, Weisheng aut Enthalten in The journal of supercomputing Springer US, 1987 75(2019), 8 vom: 20. März, Seite 5583-5595 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:75 year:2019 number:8 day:20 month:03 pages:5583-5595 https://doi.org/10.1007/s11227-019-02817-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 75 2019 8 20 03 5583-5595 |
allfieldsGer |
10.1007/s11227-019-02817-6 doi (DE-627)OLC2033959120 (DE-He213)s11227-019-02817-6-p DE-627 ger DE-627 rakwb eng 004 620 VZ Wang, Fan verfasserin (orcid)0000-0002-5879-8399 aut One-to-one disjoint path covers in hypercubes with faulty edges 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract A one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that $$p(u)\ne p(v)$$ and $$1\le k\le n$$. Then there exists a one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ joining vertices u and v in $$Q_n$$. Moreover, when $$1\le k\le n-2$$, the result still holds even if removing $$n-2-k$$ edges from $$Q_n$$. Hypercubes Vertex disjoint paths Path covers One-to-one Fault edges Zhao, Weisheng aut Enthalten in The journal of supercomputing Springer US, 1987 75(2019), 8 vom: 20. März, Seite 5583-5595 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:75 year:2019 number:8 day:20 month:03 pages:5583-5595 https://doi.org/10.1007/s11227-019-02817-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 75 2019 8 20 03 5583-5595 |
allfieldsSound |
10.1007/s11227-019-02817-6 doi (DE-627)OLC2033959120 (DE-He213)s11227-019-02817-6-p DE-627 ger DE-627 rakwb eng 004 620 VZ Wang, Fan verfasserin (orcid)0000-0002-5879-8399 aut One-to-one disjoint path covers in hypercubes with faulty edges 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract A one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that $$p(u)\ne p(v)$$ and $$1\le k\le n$$. Then there exists a one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ joining vertices u and v in $$Q_n$$. Moreover, when $$1\le k\le n-2$$, the result still holds even if removing $$n-2-k$$ edges from $$Q_n$$. Hypercubes Vertex disjoint paths Path covers One-to-one Fault edges Zhao, Weisheng aut Enthalten in The journal of supercomputing Springer US, 1987 75(2019), 8 vom: 20. März, Seite 5583-5595 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:75 year:2019 number:8 day:20 month:03 pages:5583-5595 https://doi.org/10.1007/s11227-019-02817-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 AR 75 2019 8 20 03 5583-5595 |
language |
English |
source |
Enthalten in The journal of supercomputing 75(2019), 8 vom: 20. März, Seite 5583-5595 volume:75 year:2019 number:8 day:20 month:03 pages:5583-5595 |
sourceStr |
Enthalten in The journal of supercomputing 75(2019), 8 vom: 20. März, Seite 5583-5595 volume:75 year:2019 number:8 day:20 month:03 pages:5583-5595 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hypercubes Vertex disjoint paths Path covers One-to-one Fault edges |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
The journal of supercomputing |
authorswithroles_txt_mv |
Wang, Fan @@aut@@ Zhao, Weisheng @@aut@@ |
publishDateDaySort_date |
2019-03-20T00:00:00Z |
hierarchy_top_id |
13046466X |
dewey-sort |
14 |
id |
OLC2033959120 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033959120</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504054059.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11227-019-02817-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033959120</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11227-019-02817-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5879-8399</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">One-to-one disjoint path covers in hypercubes with faulty edges</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that $$p(u)\ne p(v)$$ and $$1\le k\le n$$. Then there exists a one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ joining vertices u and v in $$Q_n$$. Moreover, when $$1\le k\le n-2$$, the result still holds even if removing $$n-2-k$$ edges from $$Q_n$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypercubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertex disjoint paths</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Path covers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">One-to-one</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault edges</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Weisheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of supercomputing</subfield><subfield code="d">Springer US, 1987</subfield><subfield code="g">75(2019), 8 vom: 20. März, Seite 5583-5595</subfield><subfield code="w">(DE-627)13046466X</subfield><subfield code="w">(DE-600)740510-8</subfield><subfield code="w">(DE-576)018667775</subfield><subfield code="x">0920-8542</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:8</subfield><subfield code="g">day:20</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:5583-5595</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11227-019-02817-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2019</subfield><subfield code="e">8</subfield><subfield code="b">20</subfield><subfield code="c">03</subfield><subfield code="h">5583-5595</subfield></datafield></record></collection>
|
author |
Wang, Fan |
spellingShingle |
Wang, Fan ddc 004 misc Hypercubes misc Vertex disjoint paths misc Path covers misc One-to-one misc Fault edges One-to-one disjoint path covers in hypercubes with faulty edges |
authorStr |
Wang, Fan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13046466X |
format |
Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0920-8542 |
topic_title |
004 620 VZ One-to-one disjoint path covers in hypercubes with faulty edges Hypercubes Vertex disjoint paths Path covers One-to-one Fault edges |
topic |
ddc 004 misc Hypercubes misc Vertex disjoint paths misc Path covers misc One-to-one misc Fault edges |
topic_unstemmed |
ddc 004 misc Hypercubes misc Vertex disjoint paths misc Path covers misc One-to-one misc Fault edges |
topic_browse |
ddc 004 misc Hypercubes misc Vertex disjoint paths misc Path covers misc One-to-one misc Fault edges |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The journal of supercomputing |
hierarchy_parent_id |
13046466X |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
The journal of supercomputing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 |
title |
One-to-one disjoint path covers in hypercubes with faulty edges |
ctrlnum |
(DE-627)OLC2033959120 (DE-He213)s11227-019-02817-6-p |
title_full |
One-to-one disjoint path covers in hypercubes with faulty edges |
author_sort |
Wang, Fan |
journal |
The journal of supercomputing |
journalStr |
The journal of supercomputing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
5583 |
author_browse |
Wang, Fan Zhao, Weisheng |
container_volume |
75 |
class |
004 620 VZ |
format_se |
Aufsätze |
author-letter |
Wang, Fan |
doi_str_mv |
10.1007/s11227-019-02817-6 |
normlink |
(ORCID)0000-0002-5879-8399 |
normlink_prefix_str_mv |
(orcid)0000-0002-5879-8399 |
dewey-full |
004 620 |
title_sort |
one-to-one disjoint path covers in hypercubes with faulty edges |
title_auth |
One-to-one disjoint path covers in hypercubes with faulty edges |
abstract |
Abstract A one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that $$p(u)\ne p(v)$$ and $$1\le k\le n$$. Then there exists a one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ joining vertices u and v in $$Q_n$$. Moreover, when $$1\le k\le n-2$$, the result still holds even if removing $$n-2-k$$ edges from $$Q_n$$. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
abstractGer |
Abstract A one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that $$p(u)\ne p(v)$$ and $$1\le k\le n$$. Then there exists a one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ joining vertices u and v in $$Q_n$$. Moreover, when $$1\le k\le n-2$$, the result still holds even if removing $$n-2-k$$ edges from $$Q_n$$. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract A one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that $$p(u)\ne p(v)$$ and $$1\le k\le n$$. Then there exists a one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ joining vertices u and v in $$Q_n$$. Moreover, when $$1\le k\le n-2$$, the result still holds even if removing $$n-2-k$$ edges from $$Q_n$$. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 |
container_issue |
8 |
title_short |
One-to-one disjoint path covers in hypercubes with faulty edges |
url |
https://doi.org/10.1007/s11227-019-02817-6 |
remote_bool |
false |
author2 |
Zhao, Weisheng |
author2Str |
Zhao, Weisheng |
ppnlink |
13046466X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11227-019-02817-6 |
up_date |
2024-07-03T19:05:00.543Z |
_version_ |
1803585847882153984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2033959120</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504054059.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11227-019-02817-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2033959120</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11227-019-02817-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5879-8399</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">One-to-one disjoint path covers in hypercubes with faulty edges</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ of a graph G is a collection of k internally vertex disjoint paths joining source with sink that cover all vertices of G. In this paper, we investigate the problem of one-to-one disjoint path cover in hypercubes with faulty edges and obtain the following results: Let u, v ∈ V(Qn) be such that $$p(u)\ne p(v)$$ and $$1\le k\le n$$. Then there exists a one-to-one k-disjoint path cover $$\{P_1,P_2,\ldots ,P_k\}$$ joining vertices u and v in $$Q_n$$. Moreover, when $$1\le k\le n-2$$, the result still holds even if removing $$n-2-k$$ edges from $$Q_n$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypercubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertex disjoint paths</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Path covers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">One-to-one</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault edges</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Weisheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of supercomputing</subfield><subfield code="d">Springer US, 1987</subfield><subfield code="g">75(2019), 8 vom: 20. März, Seite 5583-5595</subfield><subfield code="w">(DE-627)13046466X</subfield><subfield code="w">(DE-600)740510-8</subfield><subfield code="w">(DE-576)018667775</subfield><subfield code="x">0920-8542</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:8</subfield><subfield code="g">day:20</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:5583-5595</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11227-019-02817-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2019</subfield><subfield code="e">8</subfield><subfield code="b">20</subfield><subfield code="c">03</subfield><subfield code="h">5583-5595</subfield></datafield></record></collection>
|
score |
7.401272 |