Efficient mining of multilevel gene association rules from microarray and gene ontology
Abstract Some recent studies have shown that association rules can reveal the interactions between genes that might not have been revealed using traditional analysis methods like clustering. However, the existing studies consider only the association rules among individual genes. In this paper, we p...
Ausführliche Beschreibung
Autor*in: |
Tseng, Vincent S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2009 |
---|
Übergeordnetes Werk: |
Enthalten in: Information systems frontiers - Springer US, 1999, 11(2009), 4 vom: 03. März, Seite 433-447 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2009 ; number:4 ; day:03 ; month:03 ; pages:433-447 |
Links: |
---|
DOI / URN: |
10.1007/s10796-009-9156-1 |
---|
Katalog-ID: |
OLC2034126645 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034126645 | ||
003 | DE-627 | ||
005 | 20230503101508.0 | ||
007 | tu | ||
008 | 200819s2009 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10796-009-9156-1 |2 doi | |
035 | |a (DE-627)OLC2034126645 | ||
035 | |a (DE-He213)s10796-009-9156-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q VZ |
084 | |a 24,1 |a 3,2 |2 ssgn | ||
100 | 1 | |a Tseng, Vincent S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Efficient mining of multilevel gene association rules from microarray and gene ontology |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2009 | ||
520 | |a Abstract Some recent studies have shown that association rules can reveal the interactions between genes that might not have been revealed using traditional analysis methods like clustering. However, the existing studies consider only the association rules among individual genes. In this paper, we propose a new data mining method named MAGO for discovering the multilevel gene association rules from the gene microarray data and the concept hierarchy of Gene Ontology (GO). The proposed method can efficiently find out the relations between GO terms by analyzing the gene expressions with the hierarchy of GO. For example, with the biological process in GO, some rules like Process A (up) → Process B (up) cab be discovered, which indicates that the genes involved in Process B of GO are likely to be up-regulated whenever those involved in Process A are up-regulated. Moreover, we also propose a constrained mining method named CMAGO for discovering the multilevel gene expression rules with user-specified constraints. Through empirical evaluation, the proposed methods are shown to have excellent performance in discovering the hidden multilevel gene association rules. | ||
650 | 4 | |a Data mining | |
650 | 4 | |a Microarray | |
650 | 4 | |a Gene expression analysis | |
650 | 4 | |a Association rules mining | |
650 | 4 | |a Multi-level association rules | |
650 | 4 | |a Gene ontology | |
700 | 1 | |a Yu, Hsieh-Hui |4 aut | |
700 | 1 | |a Yang, Shih-Chiang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Information systems frontiers |d Springer US, 1999 |g 11(2009), 4 vom: 03. März, Seite 433-447 |w (DE-627)333991958 |w (DE-600)2057666-3 |w (DE-576)444637265 |x 1387-3326 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2009 |g number:4 |g day:03 |g month:03 |g pages:433-447 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10796-009-9156-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4029 | ||
951 | |a AR | ||
952 | |d 11 |j 2009 |e 4 |b 03 |c 03 |h 433-447 |
author_variant |
v s t vs vst h h y hhy s c y scy |
---|---|
matchkey_str |
article:13873326:2009----::fiinmnnomlieegnascainuefomco |
hierarchy_sort_str |
2009 |
publishDate |
2009 |
allfields |
10.1007/s10796-009-9156-1 doi (DE-627)OLC2034126645 (DE-He213)s10796-009-9156-1-p DE-627 ger DE-627 rakwb eng 070 004 VZ 24,1 3,2 ssgn Tseng, Vincent S. verfasserin aut Efficient mining of multilevel gene association rules from microarray and gene ontology 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract Some recent studies have shown that association rules can reveal the interactions between genes that might not have been revealed using traditional analysis methods like clustering. However, the existing studies consider only the association rules among individual genes. In this paper, we propose a new data mining method named MAGO for discovering the multilevel gene association rules from the gene microarray data and the concept hierarchy of Gene Ontology (GO). The proposed method can efficiently find out the relations between GO terms by analyzing the gene expressions with the hierarchy of GO. For example, with the biological process in GO, some rules like Process A (up) → Process B (up) cab be discovered, which indicates that the genes involved in Process B of GO are likely to be up-regulated whenever those involved in Process A are up-regulated. Moreover, we also propose a constrained mining method named CMAGO for discovering the multilevel gene expression rules with user-specified constraints. Through empirical evaluation, the proposed methods are shown to have excellent performance in discovering the hidden multilevel gene association rules. Data mining Microarray Gene expression analysis Association rules mining Multi-level association rules Gene ontology Yu, Hsieh-Hui aut Yang, Shih-Chiang aut Enthalten in Information systems frontiers Springer US, 1999 11(2009), 4 vom: 03. März, Seite 433-447 (DE-627)333991958 (DE-600)2057666-3 (DE-576)444637265 1387-3326 nnns volume:11 year:2009 number:4 day:03 month:03 pages:433-447 https://doi.org/10.1007/s10796-009-9156-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-BBI GBV_ILN_26 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4029 AR 11 2009 4 03 03 433-447 |
spelling |
10.1007/s10796-009-9156-1 doi (DE-627)OLC2034126645 (DE-He213)s10796-009-9156-1-p DE-627 ger DE-627 rakwb eng 070 004 VZ 24,1 3,2 ssgn Tseng, Vincent S. verfasserin aut Efficient mining of multilevel gene association rules from microarray and gene ontology 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract Some recent studies have shown that association rules can reveal the interactions between genes that might not have been revealed using traditional analysis methods like clustering. However, the existing studies consider only the association rules among individual genes. In this paper, we propose a new data mining method named MAGO for discovering the multilevel gene association rules from the gene microarray data and the concept hierarchy of Gene Ontology (GO). The proposed method can efficiently find out the relations between GO terms by analyzing the gene expressions with the hierarchy of GO. For example, with the biological process in GO, some rules like Process A (up) → Process B (up) cab be discovered, which indicates that the genes involved in Process B of GO are likely to be up-regulated whenever those involved in Process A are up-regulated. Moreover, we also propose a constrained mining method named CMAGO for discovering the multilevel gene expression rules with user-specified constraints. Through empirical evaluation, the proposed methods are shown to have excellent performance in discovering the hidden multilevel gene association rules. Data mining Microarray Gene expression analysis Association rules mining Multi-level association rules Gene ontology Yu, Hsieh-Hui aut Yang, Shih-Chiang aut Enthalten in Information systems frontiers Springer US, 1999 11(2009), 4 vom: 03. März, Seite 433-447 (DE-627)333991958 (DE-600)2057666-3 (DE-576)444637265 1387-3326 nnns volume:11 year:2009 number:4 day:03 month:03 pages:433-447 https://doi.org/10.1007/s10796-009-9156-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-BBI GBV_ILN_26 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4029 AR 11 2009 4 03 03 433-447 |
allfields_unstemmed |
10.1007/s10796-009-9156-1 doi (DE-627)OLC2034126645 (DE-He213)s10796-009-9156-1-p DE-627 ger DE-627 rakwb eng 070 004 VZ 24,1 3,2 ssgn Tseng, Vincent S. verfasserin aut Efficient mining of multilevel gene association rules from microarray and gene ontology 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract Some recent studies have shown that association rules can reveal the interactions between genes that might not have been revealed using traditional analysis methods like clustering. However, the existing studies consider only the association rules among individual genes. In this paper, we propose a new data mining method named MAGO for discovering the multilevel gene association rules from the gene microarray data and the concept hierarchy of Gene Ontology (GO). The proposed method can efficiently find out the relations between GO terms by analyzing the gene expressions with the hierarchy of GO. For example, with the biological process in GO, some rules like Process A (up) → Process B (up) cab be discovered, which indicates that the genes involved in Process B of GO are likely to be up-regulated whenever those involved in Process A are up-regulated. Moreover, we also propose a constrained mining method named CMAGO for discovering the multilevel gene expression rules with user-specified constraints. Through empirical evaluation, the proposed methods are shown to have excellent performance in discovering the hidden multilevel gene association rules. Data mining Microarray Gene expression analysis Association rules mining Multi-level association rules Gene ontology Yu, Hsieh-Hui aut Yang, Shih-Chiang aut Enthalten in Information systems frontiers Springer US, 1999 11(2009), 4 vom: 03. März, Seite 433-447 (DE-627)333991958 (DE-600)2057666-3 (DE-576)444637265 1387-3326 nnns volume:11 year:2009 number:4 day:03 month:03 pages:433-447 https://doi.org/10.1007/s10796-009-9156-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-BBI GBV_ILN_26 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4029 AR 11 2009 4 03 03 433-447 |
allfieldsGer |
10.1007/s10796-009-9156-1 doi (DE-627)OLC2034126645 (DE-He213)s10796-009-9156-1-p DE-627 ger DE-627 rakwb eng 070 004 VZ 24,1 3,2 ssgn Tseng, Vincent S. verfasserin aut Efficient mining of multilevel gene association rules from microarray and gene ontology 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract Some recent studies have shown that association rules can reveal the interactions between genes that might not have been revealed using traditional analysis methods like clustering. However, the existing studies consider only the association rules among individual genes. In this paper, we propose a new data mining method named MAGO for discovering the multilevel gene association rules from the gene microarray data and the concept hierarchy of Gene Ontology (GO). The proposed method can efficiently find out the relations between GO terms by analyzing the gene expressions with the hierarchy of GO. For example, with the biological process in GO, some rules like Process A (up) → Process B (up) cab be discovered, which indicates that the genes involved in Process B of GO are likely to be up-regulated whenever those involved in Process A are up-regulated. Moreover, we also propose a constrained mining method named CMAGO for discovering the multilevel gene expression rules with user-specified constraints. Through empirical evaluation, the proposed methods are shown to have excellent performance in discovering the hidden multilevel gene association rules. Data mining Microarray Gene expression analysis Association rules mining Multi-level association rules Gene ontology Yu, Hsieh-Hui aut Yang, Shih-Chiang aut Enthalten in Information systems frontiers Springer US, 1999 11(2009), 4 vom: 03. März, Seite 433-447 (DE-627)333991958 (DE-600)2057666-3 (DE-576)444637265 1387-3326 nnns volume:11 year:2009 number:4 day:03 month:03 pages:433-447 https://doi.org/10.1007/s10796-009-9156-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-BBI GBV_ILN_26 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4029 AR 11 2009 4 03 03 433-447 |
allfieldsSound |
10.1007/s10796-009-9156-1 doi (DE-627)OLC2034126645 (DE-He213)s10796-009-9156-1-p DE-627 ger DE-627 rakwb eng 070 004 VZ 24,1 3,2 ssgn Tseng, Vincent S. verfasserin aut Efficient mining of multilevel gene association rules from microarray and gene ontology 2009 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2009 Abstract Some recent studies have shown that association rules can reveal the interactions between genes that might not have been revealed using traditional analysis methods like clustering. However, the existing studies consider only the association rules among individual genes. In this paper, we propose a new data mining method named MAGO for discovering the multilevel gene association rules from the gene microarray data and the concept hierarchy of Gene Ontology (GO). The proposed method can efficiently find out the relations between GO terms by analyzing the gene expressions with the hierarchy of GO. For example, with the biological process in GO, some rules like Process A (up) → Process B (up) cab be discovered, which indicates that the genes involved in Process B of GO are likely to be up-regulated whenever those involved in Process A are up-regulated. Moreover, we also propose a constrained mining method named CMAGO for discovering the multilevel gene expression rules with user-specified constraints. Through empirical evaluation, the proposed methods are shown to have excellent performance in discovering the hidden multilevel gene association rules. Data mining Microarray Gene expression analysis Association rules mining Multi-level association rules Gene ontology Yu, Hsieh-Hui aut Yang, Shih-Chiang aut Enthalten in Information systems frontiers Springer US, 1999 11(2009), 4 vom: 03. März, Seite 433-447 (DE-627)333991958 (DE-600)2057666-3 (DE-576)444637265 1387-3326 nnns volume:11 year:2009 number:4 day:03 month:03 pages:433-447 https://doi.org/10.1007/s10796-009-9156-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-BBI GBV_ILN_26 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4029 AR 11 2009 4 03 03 433-447 |
language |
English |
source |
Enthalten in Information systems frontiers 11(2009), 4 vom: 03. März, Seite 433-447 volume:11 year:2009 number:4 day:03 month:03 pages:433-447 |
sourceStr |
Enthalten in Information systems frontiers 11(2009), 4 vom: 03. März, Seite 433-447 volume:11 year:2009 number:4 day:03 month:03 pages:433-447 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Data mining Microarray Gene expression analysis Association rules mining Multi-level association rules Gene ontology |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Information systems frontiers |
authorswithroles_txt_mv |
Tseng, Vincent S. @@aut@@ Yu, Hsieh-Hui @@aut@@ Yang, Shih-Chiang @@aut@@ |
publishDateDaySort_date |
2009-03-03T00:00:00Z |
hierarchy_top_id |
333991958 |
dewey-sort |
270 |
id |
OLC2034126645 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034126645</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503101508.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10796-009-9156-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034126645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10796-009-9156-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24,1</subfield><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tseng, Vincent S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient mining of multilevel gene association rules from microarray and gene ontology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Some recent studies have shown that association rules can reveal the interactions between genes that might not have been revealed using traditional analysis methods like clustering. However, the existing studies consider only the association rules among individual genes. In this paper, we propose a new data mining method named MAGO for discovering the multilevel gene association rules from the gene microarray data and the concept hierarchy of Gene Ontology (GO). The proposed method can efficiently find out the relations between GO terms by analyzing the gene expressions with the hierarchy of GO. For example, with the biological process in GO, some rules like Process A (up) → Process B (up) cab be discovered, which indicates that the genes involved in Process B of GO are likely to be up-regulated whenever those involved in Process A are up-regulated. Moreover, we also propose a constrained mining method named CMAGO for discovering the multilevel gene expression rules with user-specified constraints. Through empirical evaluation, the proposed methods are shown to have excellent performance in discovering the hidden multilevel gene association rules.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microarray</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene expression analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Association rules mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-level association rules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene ontology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Hsieh-Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Shih-Chiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Information systems frontiers</subfield><subfield code="d">Springer US, 1999</subfield><subfield code="g">11(2009), 4 vom: 03. März, Seite 433-447</subfield><subfield code="w">(DE-627)333991958</subfield><subfield code="w">(DE-600)2057666-3</subfield><subfield code="w">(DE-576)444637265</subfield><subfield code="x">1387-3326</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:4</subfield><subfield code="g">day:03</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:433-447</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10796-009-9156-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2009</subfield><subfield code="e">4</subfield><subfield code="b">03</subfield><subfield code="c">03</subfield><subfield code="h">433-447</subfield></datafield></record></collection>
|
author |
Tseng, Vincent S. |
spellingShingle |
Tseng, Vincent S. ddc 070 ssgn 24,1 misc Data mining misc Microarray misc Gene expression analysis misc Association rules mining misc Multi-level association rules misc Gene ontology Efficient mining of multilevel gene association rules from microarray and gene ontology |
authorStr |
Tseng, Vincent S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)333991958 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1387-3326 |
topic_title |
070 004 VZ 24,1 3,2 ssgn Efficient mining of multilevel gene association rules from microarray and gene ontology Data mining Microarray Gene expression analysis Association rules mining Multi-level association rules Gene ontology |
topic |
ddc 070 ssgn 24,1 misc Data mining misc Microarray misc Gene expression analysis misc Association rules mining misc Multi-level association rules misc Gene ontology |
topic_unstemmed |
ddc 070 ssgn 24,1 misc Data mining misc Microarray misc Gene expression analysis misc Association rules mining misc Multi-level association rules misc Gene ontology |
topic_browse |
ddc 070 ssgn 24,1 misc Data mining misc Microarray misc Gene expression analysis misc Association rules mining misc Multi-level association rules misc Gene ontology |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Information systems frontiers |
hierarchy_parent_id |
333991958 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Information systems frontiers |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)333991958 (DE-600)2057666-3 (DE-576)444637265 |
title |
Efficient mining of multilevel gene association rules from microarray and gene ontology |
ctrlnum |
(DE-627)OLC2034126645 (DE-He213)s10796-009-9156-1-p |
title_full |
Efficient mining of multilevel gene association rules from microarray and gene ontology |
author_sort |
Tseng, Vincent S. |
journal |
Information systems frontiers |
journalStr |
Information systems frontiers |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
433 |
author_browse |
Tseng, Vincent S. Yu, Hsieh-Hui Yang, Shih-Chiang |
container_volume |
11 |
class |
070 004 VZ 24,1 3,2 ssgn |
format_se |
Aufsätze |
author-letter |
Tseng, Vincent S. |
doi_str_mv |
10.1007/s10796-009-9156-1 |
dewey-full |
070 004 |
title_sort |
efficient mining of multilevel gene association rules from microarray and gene ontology |
title_auth |
Efficient mining of multilevel gene association rules from microarray and gene ontology |
abstract |
Abstract Some recent studies have shown that association rules can reveal the interactions between genes that might not have been revealed using traditional analysis methods like clustering. However, the existing studies consider only the association rules among individual genes. In this paper, we propose a new data mining method named MAGO for discovering the multilevel gene association rules from the gene microarray data and the concept hierarchy of Gene Ontology (GO). The proposed method can efficiently find out the relations between GO terms by analyzing the gene expressions with the hierarchy of GO. For example, with the biological process in GO, some rules like Process A (up) → Process B (up) cab be discovered, which indicates that the genes involved in Process B of GO are likely to be up-regulated whenever those involved in Process A are up-regulated. Moreover, we also propose a constrained mining method named CMAGO for discovering the multilevel gene expression rules with user-specified constraints. Through empirical evaluation, the proposed methods are shown to have excellent performance in discovering the hidden multilevel gene association rules. © Springer Science+Business Media, LLC 2009 |
abstractGer |
Abstract Some recent studies have shown that association rules can reveal the interactions between genes that might not have been revealed using traditional analysis methods like clustering. However, the existing studies consider only the association rules among individual genes. In this paper, we propose a new data mining method named MAGO for discovering the multilevel gene association rules from the gene microarray data and the concept hierarchy of Gene Ontology (GO). The proposed method can efficiently find out the relations between GO terms by analyzing the gene expressions with the hierarchy of GO. For example, with the biological process in GO, some rules like Process A (up) → Process B (up) cab be discovered, which indicates that the genes involved in Process B of GO are likely to be up-regulated whenever those involved in Process A are up-regulated. Moreover, we also propose a constrained mining method named CMAGO for discovering the multilevel gene expression rules with user-specified constraints. Through empirical evaluation, the proposed methods are shown to have excellent performance in discovering the hidden multilevel gene association rules. © Springer Science+Business Media, LLC 2009 |
abstract_unstemmed |
Abstract Some recent studies have shown that association rules can reveal the interactions between genes that might not have been revealed using traditional analysis methods like clustering. However, the existing studies consider only the association rules among individual genes. In this paper, we propose a new data mining method named MAGO for discovering the multilevel gene association rules from the gene microarray data and the concept hierarchy of Gene Ontology (GO). The proposed method can efficiently find out the relations between GO terms by analyzing the gene expressions with the hierarchy of GO. For example, with the biological process in GO, some rules like Process A (up) → Process B (up) cab be discovered, which indicates that the genes involved in Process B of GO are likely to be up-regulated whenever those involved in Process A are up-regulated. Moreover, we also propose a constrained mining method named CMAGO for discovering the multilevel gene expression rules with user-specified constraints. Through empirical evaluation, the proposed methods are shown to have excellent performance in discovering the hidden multilevel gene association rules. © Springer Science+Business Media, LLC 2009 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-BUB SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-BBI GBV_ILN_26 GBV_ILN_70 GBV_ILN_4012 GBV_ILN_4029 |
container_issue |
4 |
title_short |
Efficient mining of multilevel gene association rules from microarray and gene ontology |
url |
https://doi.org/10.1007/s10796-009-9156-1 |
remote_bool |
false |
author2 |
Yu, Hsieh-Hui Yang, Shih-Chiang |
author2Str |
Yu, Hsieh-Hui Yang, Shih-Chiang |
ppnlink |
333991958 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10796-009-9156-1 |
up_date |
2024-07-03T19:43:00.660Z |
_version_ |
1803588238742388736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034126645</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503101508.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2009 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10796-009-9156-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034126645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10796-009-9156-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24,1</subfield><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tseng, Vincent S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient mining of multilevel gene association rules from microarray and gene ontology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Some recent studies have shown that association rules can reveal the interactions between genes that might not have been revealed using traditional analysis methods like clustering. However, the existing studies consider only the association rules among individual genes. In this paper, we propose a new data mining method named MAGO for discovering the multilevel gene association rules from the gene microarray data and the concept hierarchy of Gene Ontology (GO). The proposed method can efficiently find out the relations between GO terms by analyzing the gene expressions with the hierarchy of GO. For example, with the biological process in GO, some rules like Process A (up) → Process B (up) cab be discovered, which indicates that the genes involved in Process B of GO are likely to be up-regulated whenever those involved in Process A are up-regulated. Moreover, we also propose a constrained mining method named CMAGO for discovering the multilevel gene expression rules with user-specified constraints. Through empirical evaluation, the proposed methods are shown to have excellent performance in discovering the hidden multilevel gene association rules.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microarray</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene expression analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Association rules mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-level association rules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene ontology</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Hsieh-Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Shih-Chiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Information systems frontiers</subfield><subfield code="d">Springer US, 1999</subfield><subfield code="g">11(2009), 4 vom: 03. März, Seite 433-447</subfield><subfield code="w">(DE-627)333991958</subfield><subfield code="w">(DE-600)2057666-3</subfield><subfield code="w">(DE-576)444637265</subfield><subfield code="x">1387-3326</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:4</subfield><subfield code="g">day:03</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:433-447</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10796-009-9156-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2009</subfield><subfield code="e">4</subfield><subfield code="b">03</subfield><subfield code="c">03</subfield><subfield code="h">433-447</subfield></datafield></record></collection>
|
score |
7.402815 |