Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes
Abstract Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. App...
Ausführliche Beschreibung
Autor*in: |
King, Ronald C. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of algebraic combinatorics - Springer US, 1992, 28(2007), 1 vom: 21. Dez., Seite 139-167 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2007 ; number:1 ; day:21 ; month:12 ; pages:139-167 |
Links: |
---|
DOI / URN: |
10.1007/s10801-007-0113-0 |
---|
Katalog-ID: |
OLC2034247124 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034247124 | ||
003 | DE-627 | ||
005 | 20230503102908.0 | ||
007 | tu | ||
008 | 200819s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10801-007-0113-0 |2 doi | |
035 | |a (DE-627)OLC2034247124 | ||
035 | |a (DE-He213)s10801-007-0113-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a King, Ronald C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2007 | ||
520 | |a Abstract Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive. | ||
650 | 4 | |a Jacobi-Trudi determinant | |
650 | 4 | |a Jeu de taquin | |
650 | 4 | |a Ribbon | |
650 | 4 | |a Schubert calculus | |
650 | 4 | |a Schur positive | |
650 | 4 | |a Skew Schur function | |
650 | 4 | |a Symmetric function | |
700 | 1 | |a Welsh, Trevor A. |4 aut | |
700 | 1 | |a van Willigenburg, Stephanie J. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of algebraic combinatorics |d Springer US, 1992 |g 28(2007), 1 vom: 21. Dez., Seite 139-167 |w (DE-627)131180770 |w (DE-600)1143271-8 |w (DE-576)033043701 |x 0925-9899 |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2007 |g number:1 |g day:21 |g month:12 |g pages:139-167 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10801-007-0113-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 28 |j 2007 |e 1 |b 21 |c 12 |h 139-167 |
author_variant |
r c k rc rck t a w ta taw w s j v wsj wsjv |
---|---|
matchkey_str |
article:09259899:2007----::cupstvtoseshrucinifrneadplctoso |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s10801-007-0113-0 doi (DE-627)OLC2034247124 (DE-He213)s10801-007-0113-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn King, Ronald C. verfasserin aut Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive. Jacobi-Trudi determinant Jeu de taquin Ribbon Schubert calculus Schur positive Skew Schur function Symmetric function Welsh, Trevor A. aut van Willigenburg, Stephanie J. aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 28(2007), 1 vom: 21. Dez., Seite 139-167 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:28 year:2007 number:1 day:21 month:12 pages:139-167 https://doi.org/10.1007/s10801-007-0113-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4323 AR 28 2007 1 21 12 139-167 |
spelling |
10.1007/s10801-007-0113-0 doi (DE-627)OLC2034247124 (DE-He213)s10801-007-0113-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn King, Ronald C. verfasserin aut Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive. Jacobi-Trudi determinant Jeu de taquin Ribbon Schubert calculus Schur positive Skew Schur function Symmetric function Welsh, Trevor A. aut van Willigenburg, Stephanie J. aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 28(2007), 1 vom: 21. Dez., Seite 139-167 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:28 year:2007 number:1 day:21 month:12 pages:139-167 https://doi.org/10.1007/s10801-007-0113-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4323 AR 28 2007 1 21 12 139-167 |
allfields_unstemmed |
10.1007/s10801-007-0113-0 doi (DE-627)OLC2034247124 (DE-He213)s10801-007-0113-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn King, Ronald C. verfasserin aut Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive. Jacobi-Trudi determinant Jeu de taquin Ribbon Schubert calculus Schur positive Skew Schur function Symmetric function Welsh, Trevor A. aut van Willigenburg, Stephanie J. aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 28(2007), 1 vom: 21. Dez., Seite 139-167 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:28 year:2007 number:1 day:21 month:12 pages:139-167 https://doi.org/10.1007/s10801-007-0113-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4323 AR 28 2007 1 21 12 139-167 |
allfieldsGer |
10.1007/s10801-007-0113-0 doi (DE-627)OLC2034247124 (DE-He213)s10801-007-0113-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn King, Ronald C. verfasserin aut Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive. Jacobi-Trudi determinant Jeu de taquin Ribbon Schubert calculus Schur positive Skew Schur function Symmetric function Welsh, Trevor A. aut van Willigenburg, Stephanie J. aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 28(2007), 1 vom: 21. Dez., Seite 139-167 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:28 year:2007 number:1 day:21 month:12 pages:139-167 https://doi.org/10.1007/s10801-007-0113-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4323 AR 28 2007 1 21 12 139-167 |
allfieldsSound |
10.1007/s10801-007-0113-0 doi (DE-627)OLC2034247124 (DE-He213)s10801-007-0113-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn King, Ronald C. verfasserin aut Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive. Jacobi-Trudi determinant Jeu de taquin Ribbon Schubert calculus Schur positive Skew Schur function Symmetric function Welsh, Trevor A. aut van Willigenburg, Stephanie J. aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 28(2007), 1 vom: 21. Dez., Seite 139-167 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:28 year:2007 number:1 day:21 month:12 pages:139-167 https://doi.org/10.1007/s10801-007-0113-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4323 AR 28 2007 1 21 12 139-167 |
language |
English |
source |
Enthalten in Journal of algebraic combinatorics 28(2007), 1 vom: 21. Dez., Seite 139-167 volume:28 year:2007 number:1 day:21 month:12 pages:139-167 |
sourceStr |
Enthalten in Journal of algebraic combinatorics 28(2007), 1 vom: 21. Dez., Seite 139-167 volume:28 year:2007 number:1 day:21 month:12 pages:139-167 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Jacobi-Trudi determinant Jeu de taquin Ribbon Schubert calculus Schur positive Skew Schur function Symmetric function |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of algebraic combinatorics |
authorswithroles_txt_mv |
King, Ronald C. @@aut@@ Welsh, Trevor A. @@aut@@ van Willigenburg, Stephanie J. @@aut@@ |
publishDateDaySort_date |
2007-12-21T00:00:00Z |
hierarchy_top_id |
131180770 |
dewey-sort |
3510 |
id |
OLC2034247124 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034247124</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503102908.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10801-007-0113-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034247124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10801-007-0113-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">King, Ronald C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jacobi-Trudi determinant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jeu de taquin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schubert calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schur positive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skew Schur function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Welsh, Trevor A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Willigenburg, Stephanie J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of algebraic combinatorics</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">28(2007), 1 vom: 21. Dez., Seite 139-167</subfield><subfield code="w">(DE-627)131180770</subfield><subfield code="w">(DE-600)1143271-8</subfield><subfield code="w">(DE-576)033043701</subfield><subfield code="x">0925-9899</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:139-167</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10801-007-0113-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2007</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">12</subfield><subfield code="h">139-167</subfield></datafield></record></collection>
|
author |
King, Ronald C. |
spellingShingle |
King, Ronald C. ddc 510 ssgn 17,1 misc Jacobi-Trudi determinant misc Jeu de taquin misc Ribbon misc Schubert calculus misc Schur positive misc Skew Schur function misc Symmetric function Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes |
authorStr |
King, Ronald C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131180770 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0925-9899 |
topic_title |
510 VZ 17,1 ssgn Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes Jacobi-Trudi determinant Jeu de taquin Ribbon Schubert calculus Schur positive Skew Schur function Symmetric function |
topic |
ddc 510 ssgn 17,1 misc Jacobi-Trudi determinant misc Jeu de taquin misc Ribbon misc Schubert calculus misc Schur positive misc Skew Schur function misc Symmetric function |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Jacobi-Trudi determinant misc Jeu de taquin misc Ribbon misc Schubert calculus misc Schur positive misc Skew Schur function misc Symmetric function |
topic_browse |
ddc 510 ssgn 17,1 misc Jacobi-Trudi determinant misc Jeu de taquin misc Ribbon misc Schubert calculus misc Schur positive misc Skew Schur function misc Symmetric function |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of algebraic combinatorics |
hierarchy_parent_id |
131180770 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of algebraic combinatorics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 |
title |
Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes |
ctrlnum |
(DE-627)OLC2034247124 (DE-He213)s10801-007-0113-0-p |
title_full |
Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes |
author_sort |
King, Ronald C. |
journal |
Journal of algebraic combinatorics |
journalStr |
Journal of algebraic combinatorics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
139 |
author_browse |
King, Ronald C. Welsh, Trevor A. van Willigenburg, Stephanie J. |
container_volume |
28 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
King, Ronald C. |
doi_str_mv |
10.1007/s10801-007-0113-0 |
dewey-full |
510 |
title_sort |
schur positivity of skew schur function differences and applications to ribbons and schubert classes |
title_auth |
Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes |
abstract |
Abstract Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive. © Springer Science+Business Media, LLC 2007 |
abstractGer |
Abstract Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive. © Springer Science+Business Media, LLC 2007 |
abstract_unstemmed |
Abstract Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive. © Springer Science+Business Media, LLC 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4323 |
container_issue |
1 |
title_short |
Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes |
url |
https://doi.org/10.1007/s10801-007-0113-0 |
remote_bool |
false |
author2 |
Welsh, Trevor A. van Willigenburg, Stephanie J. |
author2Str |
Welsh, Trevor A. van Willigenburg, Stephanie J. |
ppnlink |
131180770 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10801-007-0113-0 |
up_date |
2024-07-03T20:14:47.241Z |
_version_ |
1803590237937467392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034247124</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503102908.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10801-007-0113-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034247124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10801-007-0113-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">King, Ronald C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Some new relations on skew Schur function differences are established both combinatorially using Schützenberger’s jeu de taquin, and algebraically using Jacobi-Trudi determinants. These relations lead to the conclusion that certain differences of skew Schur functions are Schur positive. Applying these results to a basis of symmetric functions involving ribbon Schur functions confirms the validity of a Schur positivity conjecture due to McNamara. A further application reveals that certain differences of products of Schubert classes are Schubert positive.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jacobi-Trudi determinant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jeu de taquin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schubert calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schur positive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Skew Schur function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Welsh, Trevor A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Willigenburg, Stephanie J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of algebraic combinatorics</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">28(2007), 1 vom: 21. Dez., Seite 139-167</subfield><subfield code="w">(DE-627)131180770</subfield><subfield code="w">(DE-600)1143271-8</subfield><subfield code="w">(DE-576)033043701</subfield><subfield code="x">0925-9899</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:139-167</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10801-007-0113-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2007</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">12</subfield><subfield code="h">139-167</subfield></datafield></record></collection>
|
score |
7.403097 |