An algorithmic Littlewood-Richardson rule
Abstract We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun (2000). We also present a corollary r...
Ausführliche Beschreibung
Autor*in: |
Liu, Ricky Ini [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of algebraic combinatorics - Springer US, 1992, 31(2010), 2 vom: 21. Jan., Seite 253-266 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2010 ; number:2 ; day:21 ; month:01 ; pages:253-266 |
Links: |
---|
DOI / URN: |
10.1007/s10801-009-0184-1 |
---|
Katalog-ID: |
OLC2034247787 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034247787 | ||
003 | DE-627 | ||
005 | 20230503102914.0 | ||
007 | tu | ||
008 | 200819s2010 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10801-009-0184-1 |2 doi | |
035 | |a (DE-627)OLC2034247787 | ||
035 | |a (DE-He213)s10801-009-0184-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Liu, Ricky Ini |e verfasserin |4 aut | |
245 | 1 | 0 | |a An algorithmic Littlewood-Richardson rule |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2010 | ||
520 | |a Abstract We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun (2000). We also present a corollary regarding the Specht modules of the intermediate diagrams. | ||
650 | 4 | |a Littlewood-Richardson rule | |
650 | 4 | |a Specht modules | |
650 | 4 | |a Grassmannian | |
773 | 0 | 8 | |i Enthalten in |t Journal of algebraic combinatorics |d Springer US, 1992 |g 31(2010), 2 vom: 21. Jan., Seite 253-266 |w (DE-627)131180770 |w (DE-600)1143271-8 |w (DE-576)033043701 |x 0925-9899 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2010 |g number:2 |g day:21 |g month:01 |g pages:253-266 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10801-009-0184-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 31 |j 2010 |e 2 |b 21 |c 01 |h 253-266 |
author_variant |
r i l ri ril |
---|---|
matchkey_str |
article:09259899:2010----::nloihiltlworc |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s10801-009-0184-1 doi (DE-627)OLC2034247787 (DE-He213)s10801-009-0184-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Liu, Ricky Ini verfasserin aut An algorithmic Littlewood-Richardson rule 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun (2000). We also present a corollary regarding the Specht modules of the intermediate diagrams. Littlewood-Richardson rule Specht modules Grassmannian Enthalten in Journal of algebraic combinatorics Springer US, 1992 31(2010), 2 vom: 21. Jan., Seite 253-266 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:31 year:2010 number:2 day:21 month:01 pages:253-266 https://doi.org/10.1007/s10801-009-0184-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4323 AR 31 2010 2 21 01 253-266 |
spelling |
10.1007/s10801-009-0184-1 doi (DE-627)OLC2034247787 (DE-He213)s10801-009-0184-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Liu, Ricky Ini verfasserin aut An algorithmic Littlewood-Richardson rule 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun (2000). We also present a corollary regarding the Specht modules of the intermediate diagrams. Littlewood-Richardson rule Specht modules Grassmannian Enthalten in Journal of algebraic combinatorics Springer US, 1992 31(2010), 2 vom: 21. Jan., Seite 253-266 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:31 year:2010 number:2 day:21 month:01 pages:253-266 https://doi.org/10.1007/s10801-009-0184-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4323 AR 31 2010 2 21 01 253-266 |
allfields_unstemmed |
10.1007/s10801-009-0184-1 doi (DE-627)OLC2034247787 (DE-He213)s10801-009-0184-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Liu, Ricky Ini verfasserin aut An algorithmic Littlewood-Richardson rule 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun (2000). We also present a corollary regarding the Specht modules of the intermediate diagrams. Littlewood-Richardson rule Specht modules Grassmannian Enthalten in Journal of algebraic combinatorics Springer US, 1992 31(2010), 2 vom: 21. Jan., Seite 253-266 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:31 year:2010 number:2 day:21 month:01 pages:253-266 https://doi.org/10.1007/s10801-009-0184-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4323 AR 31 2010 2 21 01 253-266 |
allfieldsGer |
10.1007/s10801-009-0184-1 doi (DE-627)OLC2034247787 (DE-He213)s10801-009-0184-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Liu, Ricky Ini verfasserin aut An algorithmic Littlewood-Richardson rule 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun (2000). We also present a corollary regarding the Specht modules of the intermediate diagrams. Littlewood-Richardson rule Specht modules Grassmannian Enthalten in Journal of algebraic combinatorics Springer US, 1992 31(2010), 2 vom: 21. Jan., Seite 253-266 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:31 year:2010 number:2 day:21 month:01 pages:253-266 https://doi.org/10.1007/s10801-009-0184-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4323 AR 31 2010 2 21 01 253-266 |
allfieldsSound |
10.1007/s10801-009-0184-1 doi (DE-627)OLC2034247787 (DE-He213)s10801-009-0184-1-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Liu, Ricky Ini verfasserin aut An algorithmic Littlewood-Richardson rule 2010 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2010 Abstract We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun (2000). We also present a corollary regarding the Specht modules of the intermediate diagrams. Littlewood-Richardson rule Specht modules Grassmannian Enthalten in Journal of algebraic combinatorics Springer US, 1992 31(2010), 2 vom: 21. Jan., Seite 253-266 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:31 year:2010 number:2 day:21 month:01 pages:253-266 https://doi.org/10.1007/s10801-009-0184-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4323 AR 31 2010 2 21 01 253-266 |
language |
English |
source |
Enthalten in Journal of algebraic combinatorics 31(2010), 2 vom: 21. Jan., Seite 253-266 volume:31 year:2010 number:2 day:21 month:01 pages:253-266 |
sourceStr |
Enthalten in Journal of algebraic combinatorics 31(2010), 2 vom: 21. Jan., Seite 253-266 volume:31 year:2010 number:2 day:21 month:01 pages:253-266 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Littlewood-Richardson rule Specht modules Grassmannian |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of algebraic combinatorics |
authorswithroles_txt_mv |
Liu, Ricky Ini @@aut@@ |
publishDateDaySort_date |
2010-01-21T00:00:00Z |
hierarchy_top_id |
131180770 |
dewey-sort |
3510 |
id |
OLC2034247787 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034247787</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503102914.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10801-009-0184-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034247787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10801-009-0184-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Ricky Ini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An algorithmic Littlewood-Richardson rule</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun (2000). We also present a corollary regarding the Specht modules of the intermediate diagrams.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Littlewood-Richardson rule</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Specht modules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grassmannian</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of algebraic combinatorics</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">31(2010), 2 vom: 21. Jan., Seite 253-266</subfield><subfield code="w">(DE-627)131180770</subfield><subfield code="w">(DE-600)1143271-8</subfield><subfield code="w">(DE-576)033043701</subfield><subfield code="x">0925-9899</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:2</subfield><subfield code="g">day:21</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:253-266</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10801-009-0184-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2010</subfield><subfield code="e">2</subfield><subfield code="b">21</subfield><subfield code="c">01</subfield><subfield code="h">253-266</subfield></datafield></record></collection>
|
author |
Liu, Ricky Ini |
spellingShingle |
Liu, Ricky Ini ddc 510 ssgn 17,1 misc Littlewood-Richardson rule misc Specht modules misc Grassmannian An algorithmic Littlewood-Richardson rule |
authorStr |
Liu, Ricky Ini |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131180770 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0925-9899 |
topic_title |
510 VZ 17,1 ssgn An algorithmic Littlewood-Richardson rule Littlewood-Richardson rule Specht modules Grassmannian |
topic |
ddc 510 ssgn 17,1 misc Littlewood-Richardson rule misc Specht modules misc Grassmannian |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Littlewood-Richardson rule misc Specht modules misc Grassmannian |
topic_browse |
ddc 510 ssgn 17,1 misc Littlewood-Richardson rule misc Specht modules misc Grassmannian |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of algebraic combinatorics |
hierarchy_parent_id |
131180770 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of algebraic combinatorics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 |
title |
An algorithmic Littlewood-Richardson rule |
ctrlnum |
(DE-627)OLC2034247787 (DE-He213)s10801-009-0184-1-p |
title_full |
An algorithmic Littlewood-Richardson rule |
author_sort |
Liu, Ricky Ini |
journal |
Journal of algebraic combinatorics |
journalStr |
Journal of algebraic combinatorics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
253 |
author_browse |
Liu, Ricky Ini |
container_volume |
31 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Liu, Ricky Ini |
doi_str_mv |
10.1007/s10801-009-0184-1 |
dewey-full |
510 |
title_sort |
an algorithmic littlewood-richardson rule |
title_auth |
An algorithmic Littlewood-Richardson rule |
abstract |
Abstract We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun (2000). We also present a corollary regarding the Specht modules of the intermediate diagrams. © Springer Science+Business Media, LLC 2010 |
abstractGer |
Abstract We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun (2000). We also present a corollary regarding the Specht modules of the intermediate diagrams. © Springer Science+Business Media, LLC 2010 |
abstract_unstemmed |
Abstract We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun (2000). We also present a corollary regarding the Specht modules of the intermediate diagrams. © Springer Science+Business Media, LLC 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_100 GBV_ILN_2002 GBV_ILN_2088 GBV_ILN_4323 |
container_issue |
2 |
title_short |
An algorithmic Littlewood-Richardson rule |
url |
https://doi.org/10.1007/s10801-009-0184-1 |
remote_bool |
false |
ppnlink |
131180770 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10801-009-0184-1 |
up_date |
2024-07-03T20:14:55.628Z |
_version_ |
1803590246736068608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034247787</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503102914.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2010 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10801-009-0184-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034247787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10801-009-0184-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Ricky Ini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An algorithmic Littlewood-Richardson rule</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We introduce a Littlewood-Richardson rule based on an algorithmic deformation of skew Young diagrams and present a bijection with the classical rule. The result is a direct combinatorial interpretation and proof of the geometric rule presented by Coskun (2000). We also present a corollary regarding the Specht modules of the intermediate diagrams.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Littlewood-Richardson rule</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Specht modules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grassmannian</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of algebraic combinatorics</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">31(2010), 2 vom: 21. Jan., Seite 253-266</subfield><subfield code="w">(DE-627)131180770</subfield><subfield code="w">(DE-600)1143271-8</subfield><subfield code="w">(DE-576)033043701</subfield><subfield code="x">0925-9899</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:2</subfield><subfield code="g">day:21</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:253-266</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10801-009-0184-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2010</subfield><subfield code="e">2</subfield><subfield code="b">21</subfield><subfield code="c">01</subfield><subfield code="h">253-266</subfield></datafield></record></collection>
|
score |
7.401457 |