Skew row-strict quasisymmetric Schur functions
Abstract Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a mo...
Ausführliche Beschreibung
Autor*in: |
Mason, Sarah K. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of algebraic combinatorics - Springer US, 1992, 42(2015), 3 vom: 12. Mai, Seite 763-791 |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:2015 ; number:3 ; day:12 ; month:05 ; pages:763-791 |
Links: |
---|
DOI / URN: |
10.1007/s10801-015-0601-6 |
---|
Katalog-ID: |
OLC2034251881 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034251881 | ||
003 | DE-627 | ||
005 | 20230503102945.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10801-015-0601-6 |2 doi | |
035 | |a (DE-627)OLC2034251881 | ||
035 | |a (DE-He213)s10801-015-0601-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Mason, Sarah K. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Skew row-strict quasisymmetric Schur functions |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2015 | ||
520 | |a Abstract Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function. | ||
650 | 4 | |a Quasisymmetric functions | |
650 | 4 | |a Schur functions | |
650 | 4 | |a Composition tableaux | |
650 | 4 | |a Littlewood–Richardson rule | |
700 | 1 | |a Niese, Elizabeth |0 (orcid)0000-0003-3596-5630 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of algebraic combinatorics |d Springer US, 1992 |g 42(2015), 3 vom: 12. Mai, Seite 763-791 |w (DE-627)131180770 |w (DE-600)1143271-8 |w (DE-576)033043701 |x 0925-9899 |7 nnns |
773 | 1 | 8 | |g volume:42 |g year:2015 |g number:3 |g day:12 |g month:05 |g pages:763-791 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10801-015-0601-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 42 |j 2015 |e 3 |b 12 |c 05 |h 763-791 |
author_variant |
s k m sk skm e n en |
---|---|
matchkey_str |
article:09259899:2015----::kwosrcqaiymtish |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s10801-015-0601-6 doi (DE-627)OLC2034251881 (DE-He213)s10801-015-0601-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mason, Sarah K. verfasserin aut Skew row-strict quasisymmetric Schur functions 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function. Quasisymmetric functions Schur functions Composition tableaux Littlewood–Richardson rule Niese, Elizabeth (orcid)0000-0003-3596-5630 aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 42(2015), 3 vom: 12. Mai, Seite 763-791 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:42 year:2015 number:3 day:12 month:05 pages:763-791 https://doi.org/10.1007/s10801-015-0601-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4323 AR 42 2015 3 12 05 763-791 |
spelling |
10.1007/s10801-015-0601-6 doi (DE-627)OLC2034251881 (DE-He213)s10801-015-0601-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mason, Sarah K. verfasserin aut Skew row-strict quasisymmetric Schur functions 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function. Quasisymmetric functions Schur functions Composition tableaux Littlewood–Richardson rule Niese, Elizabeth (orcid)0000-0003-3596-5630 aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 42(2015), 3 vom: 12. Mai, Seite 763-791 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:42 year:2015 number:3 day:12 month:05 pages:763-791 https://doi.org/10.1007/s10801-015-0601-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4323 AR 42 2015 3 12 05 763-791 |
allfields_unstemmed |
10.1007/s10801-015-0601-6 doi (DE-627)OLC2034251881 (DE-He213)s10801-015-0601-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mason, Sarah K. verfasserin aut Skew row-strict quasisymmetric Schur functions 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function. Quasisymmetric functions Schur functions Composition tableaux Littlewood–Richardson rule Niese, Elizabeth (orcid)0000-0003-3596-5630 aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 42(2015), 3 vom: 12. Mai, Seite 763-791 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:42 year:2015 number:3 day:12 month:05 pages:763-791 https://doi.org/10.1007/s10801-015-0601-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4323 AR 42 2015 3 12 05 763-791 |
allfieldsGer |
10.1007/s10801-015-0601-6 doi (DE-627)OLC2034251881 (DE-He213)s10801-015-0601-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mason, Sarah K. verfasserin aut Skew row-strict quasisymmetric Schur functions 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function. Quasisymmetric functions Schur functions Composition tableaux Littlewood–Richardson rule Niese, Elizabeth (orcid)0000-0003-3596-5630 aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 42(2015), 3 vom: 12. Mai, Seite 763-791 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:42 year:2015 number:3 day:12 month:05 pages:763-791 https://doi.org/10.1007/s10801-015-0601-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4323 AR 42 2015 3 12 05 763-791 |
allfieldsSound |
10.1007/s10801-015-0601-6 doi (DE-627)OLC2034251881 (DE-He213)s10801-015-0601-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mason, Sarah K. verfasserin aut Skew row-strict quasisymmetric Schur functions 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function. Quasisymmetric functions Schur functions Composition tableaux Littlewood–Richardson rule Niese, Elizabeth (orcid)0000-0003-3596-5630 aut Enthalten in Journal of algebraic combinatorics Springer US, 1992 42(2015), 3 vom: 12. Mai, Seite 763-791 (DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 0925-9899 nnns volume:42 year:2015 number:3 day:12 month:05 pages:763-791 https://doi.org/10.1007/s10801-015-0601-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4323 AR 42 2015 3 12 05 763-791 |
language |
English |
source |
Enthalten in Journal of algebraic combinatorics 42(2015), 3 vom: 12. Mai, Seite 763-791 volume:42 year:2015 number:3 day:12 month:05 pages:763-791 |
sourceStr |
Enthalten in Journal of algebraic combinatorics 42(2015), 3 vom: 12. Mai, Seite 763-791 volume:42 year:2015 number:3 day:12 month:05 pages:763-791 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quasisymmetric functions Schur functions Composition tableaux Littlewood–Richardson rule |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of algebraic combinatorics |
authorswithroles_txt_mv |
Mason, Sarah K. @@aut@@ Niese, Elizabeth @@aut@@ |
publishDateDaySort_date |
2015-05-12T00:00:00Z |
hierarchy_top_id |
131180770 |
dewey-sort |
3510 |
id |
OLC2034251881 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034251881</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503102945.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10801-015-0601-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034251881</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10801-015-0601-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mason, Sarah K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Skew row-strict quasisymmetric Schur functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasisymmetric functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schur functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composition tableaux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Littlewood–Richardson rule</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niese, Elizabeth</subfield><subfield code="0">(orcid)0000-0003-3596-5630</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of algebraic combinatorics</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">42(2015), 3 vom: 12. Mai, Seite 763-791</subfield><subfield code="w">(DE-627)131180770</subfield><subfield code="w">(DE-600)1143271-8</subfield><subfield code="w">(DE-576)033043701</subfield><subfield code="x">0925-9899</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:12</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:763-791</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10801-015-0601-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">12</subfield><subfield code="c">05</subfield><subfield code="h">763-791</subfield></datafield></record></collection>
|
author |
Mason, Sarah K. |
spellingShingle |
Mason, Sarah K. ddc 510 ssgn 17,1 misc Quasisymmetric functions misc Schur functions misc Composition tableaux misc Littlewood–Richardson rule Skew row-strict quasisymmetric Schur functions |
authorStr |
Mason, Sarah K. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131180770 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0925-9899 |
topic_title |
510 VZ 17,1 ssgn Skew row-strict quasisymmetric Schur functions Quasisymmetric functions Schur functions Composition tableaux Littlewood–Richardson rule |
topic |
ddc 510 ssgn 17,1 misc Quasisymmetric functions misc Schur functions misc Composition tableaux misc Littlewood–Richardson rule |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Quasisymmetric functions misc Schur functions misc Composition tableaux misc Littlewood–Richardson rule |
topic_browse |
ddc 510 ssgn 17,1 misc Quasisymmetric functions misc Schur functions misc Composition tableaux misc Littlewood–Richardson rule |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of algebraic combinatorics |
hierarchy_parent_id |
131180770 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of algebraic combinatorics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131180770 (DE-600)1143271-8 (DE-576)033043701 |
title |
Skew row-strict quasisymmetric Schur functions |
ctrlnum |
(DE-627)OLC2034251881 (DE-He213)s10801-015-0601-6-p |
title_full |
Skew row-strict quasisymmetric Schur functions |
author_sort |
Mason, Sarah K. |
journal |
Journal of algebraic combinatorics |
journalStr |
Journal of algebraic combinatorics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
763 |
author_browse |
Mason, Sarah K. Niese, Elizabeth |
container_volume |
42 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Mason, Sarah K. |
doi_str_mv |
10.1007/s10801-015-0601-6 |
normlink |
(ORCID)0000-0003-3596-5630 |
normlink_prefix_str_mv |
(orcid)0000-0003-3596-5630 |
dewey-full |
510 |
title_sort |
skew row-strict quasisymmetric schur functions |
title_auth |
Skew row-strict quasisymmetric Schur functions |
abstract |
Abstract Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function. © Springer Science+Business Media New York 2015 |
abstractGer |
Abstract Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function. © Springer Science+Business Media New York 2015 |
abstract_unstemmed |
Abstract Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function. © Springer Science+Business Media New York 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_4323 |
container_issue |
3 |
title_short |
Skew row-strict quasisymmetric Schur functions |
url |
https://doi.org/10.1007/s10801-015-0601-6 |
remote_bool |
false |
author2 |
Niese, Elizabeth |
author2Str |
Niese, Elizabeth |
ppnlink |
131180770 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10801-015-0601-6 |
up_date |
2024-07-03T20:15:47.829Z |
_version_ |
1803590301468590081 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034251881</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503102945.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10801-015-0601-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034251881</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10801-015-0601-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mason, Sarah K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Skew row-strict quasisymmetric Schur functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict Young composition fillings. After discussing basic combinatorial properties of these functions, we define a skew Young row-strict quasisymmetric Schur function using the Hopf algebra of quasisymmetric functions and then prove this is equivalent to a combinatorial description. We also provide a decomposition of the skew Young row-strict quasisymmetric Schur functions into a sum of Gessel’s fundamental quasisymmetric functions and prove a multiplication rule for the product of a Young row-strict quasisymmetric Schur function and a Schur function.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasisymmetric functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schur functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composition tableaux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Littlewood–Richardson rule</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niese, Elizabeth</subfield><subfield code="0">(orcid)0000-0003-3596-5630</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of algebraic combinatorics</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">42(2015), 3 vom: 12. Mai, Seite 763-791</subfield><subfield code="w">(DE-627)131180770</subfield><subfield code="w">(DE-600)1143271-8</subfield><subfield code="w">(DE-576)033043701</subfield><subfield code="x">0925-9899</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:12</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:763-791</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10801-015-0601-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">12</subfield><subfield code="c">05</subfield><subfield code="h">763-791</subfield></datafield></record></collection>
|
score |
7.4021244 |