Diffusion and thermal slip of a binary gas mixture
Abstract Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of th...
Ausführliche Beschreibung
Autor*in: |
Abramov, Yu. Yu. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1970 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Consultants Bureau 1973 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of applied mechanics and technical physics - Kluwer Academic Publishers-Plenum Publishers, 1966, 11(1970), 4 vom: Juli, Seite 567-570 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:1970 ; number:4 ; month:07 ; pages:567-570 |
Links: |
---|
DOI / URN: |
10.1007/BF00850840 |
---|
Katalog-ID: |
OLC2034377613 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034377613 | ||
003 | DE-627 | ||
005 | 20230503104526.0 | ||
007 | tu | ||
008 | 200819s1970 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF00850840 |2 doi | |
035 | |a (DE-627)OLC2034377613 | ||
035 | |a (DE-He213)BF00850840-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Abramov, Yu. Yu. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Diffusion and thermal slip of a binary gas mixture |
264 | 1 | |c 1970 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Consultants Bureau 1973 | ||
520 | |a Abstract Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of the partial pressure gradients. The kinetic equation is solved by an approximate method based on physical considerations. A formula has been obtained analytically for the slip velocity for arbitrary accommodation coefficients as well as for arbitrary gas concentrations and arbitrary molecule masses. The results agree to 1% accuracy with the numerical computations of other authors. | ||
650 | 4 | |a Partial Pressure | |
650 | 4 | |a Temperature Gradient | |
650 | 4 | |a Numerical Computation | |
650 | 4 | |a Pressure Gradient | |
650 | 4 | |a Industrial Mathematic | |
700 | 1 | |a Gladush, G. G. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of applied mechanics and technical physics |d Kluwer Academic Publishers-Plenum Publishers, 1966 |g 11(1970), 4 vom: Juli, Seite 567-570 |w (DE-627)129600946 |w (DE-600)241350-4 |w (DE-576)015094545 |x 0021-8944 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:1970 |g number:4 |g month:07 |g pages:567-570 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF00850840 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 11 |j 1970 |e 4 |c 07 |h 567-570 |
author_variant |
y y a yy yya g g g gg ggg |
---|---|
matchkey_str |
article:00218944:1970----::ifsoadhrasioaia |
hierarchy_sort_str |
1970 |
publishDate |
1970 |
allfields |
10.1007/BF00850840 doi (DE-627)OLC2034377613 (DE-He213)BF00850840-p DE-627 ger DE-627 rakwb eng 530 VZ Abramov, Yu. Yu. verfasserin aut Diffusion and thermal slip of a binary gas mixture 1970 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Consultants Bureau 1973 Abstract Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of the partial pressure gradients. The kinetic equation is solved by an approximate method based on physical considerations. A formula has been obtained analytically for the slip velocity for arbitrary accommodation coefficients as well as for arbitrary gas concentrations and arbitrary molecule masses. The results agree to 1% accuracy with the numerical computations of other authors. Partial Pressure Temperature Gradient Numerical Computation Pressure Gradient Industrial Mathematic Gladush, G. G. aut Enthalten in Journal of applied mechanics and technical physics Kluwer Academic Publishers-Plenum Publishers, 1966 11(1970), 4 vom: Juli, Seite 567-570 (DE-627)129600946 (DE-600)241350-4 (DE-576)015094545 0021-8944 nnns volume:11 year:1970 number:4 month:07 pages:567-570 https://doi.org/10.1007/BF00850840 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_70 AR 11 1970 4 07 567-570 |
spelling |
10.1007/BF00850840 doi (DE-627)OLC2034377613 (DE-He213)BF00850840-p DE-627 ger DE-627 rakwb eng 530 VZ Abramov, Yu. Yu. verfasserin aut Diffusion and thermal slip of a binary gas mixture 1970 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Consultants Bureau 1973 Abstract Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of the partial pressure gradients. The kinetic equation is solved by an approximate method based on physical considerations. A formula has been obtained analytically for the slip velocity for arbitrary accommodation coefficients as well as for arbitrary gas concentrations and arbitrary molecule masses. The results agree to 1% accuracy with the numerical computations of other authors. Partial Pressure Temperature Gradient Numerical Computation Pressure Gradient Industrial Mathematic Gladush, G. G. aut Enthalten in Journal of applied mechanics and technical physics Kluwer Academic Publishers-Plenum Publishers, 1966 11(1970), 4 vom: Juli, Seite 567-570 (DE-627)129600946 (DE-600)241350-4 (DE-576)015094545 0021-8944 nnns volume:11 year:1970 number:4 month:07 pages:567-570 https://doi.org/10.1007/BF00850840 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_70 AR 11 1970 4 07 567-570 |
allfields_unstemmed |
10.1007/BF00850840 doi (DE-627)OLC2034377613 (DE-He213)BF00850840-p DE-627 ger DE-627 rakwb eng 530 VZ Abramov, Yu. Yu. verfasserin aut Diffusion and thermal slip of a binary gas mixture 1970 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Consultants Bureau 1973 Abstract Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of the partial pressure gradients. The kinetic equation is solved by an approximate method based on physical considerations. A formula has been obtained analytically for the slip velocity for arbitrary accommodation coefficients as well as for arbitrary gas concentrations and arbitrary molecule masses. The results agree to 1% accuracy with the numerical computations of other authors. Partial Pressure Temperature Gradient Numerical Computation Pressure Gradient Industrial Mathematic Gladush, G. G. aut Enthalten in Journal of applied mechanics and technical physics Kluwer Academic Publishers-Plenum Publishers, 1966 11(1970), 4 vom: Juli, Seite 567-570 (DE-627)129600946 (DE-600)241350-4 (DE-576)015094545 0021-8944 nnns volume:11 year:1970 number:4 month:07 pages:567-570 https://doi.org/10.1007/BF00850840 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_70 AR 11 1970 4 07 567-570 |
allfieldsGer |
10.1007/BF00850840 doi (DE-627)OLC2034377613 (DE-He213)BF00850840-p DE-627 ger DE-627 rakwb eng 530 VZ Abramov, Yu. Yu. verfasserin aut Diffusion and thermal slip of a binary gas mixture 1970 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Consultants Bureau 1973 Abstract Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of the partial pressure gradients. The kinetic equation is solved by an approximate method based on physical considerations. A formula has been obtained analytically for the slip velocity for arbitrary accommodation coefficients as well as for arbitrary gas concentrations and arbitrary molecule masses. The results agree to 1% accuracy with the numerical computations of other authors. Partial Pressure Temperature Gradient Numerical Computation Pressure Gradient Industrial Mathematic Gladush, G. G. aut Enthalten in Journal of applied mechanics and technical physics Kluwer Academic Publishers-Plenum Publishers, 1966 11(1970), 4 vom: Juli, Seite 567-570 (DE-627)129600946 (DE-600)241350-4 (DE-576)015094545 0021-8944 nnns volume:11 year:1970 number:4 month:07 pages:567-570 https://doi.org/10.1007/BF00850840 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_70 AR 11 1970 4 07 567-570 |
allfieldsSound |
10.1007/BF00850840 doi (DE-627)OLC2034377613 (DE-He213)BF00850840-p DE-627 ger DE-627 rakwb eng 530 VZ Abramov, Yu. Yu. verfasserin aut Diffusion and thermal slip of a binary gas mixture 1970 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Consultants Bureau 1973 Abstract Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of the partial pressure gradients. The kinetic equation is solved by an approximate method based on physical considerations. A formula has been obtained analytically for the slip velocity for arbitrary accommodation coefficients as well as for arbitrary gas concentrations and arbitrary molecule masses. The results agree to 1% accuracy with the numerical computations of other authors. Partial Pressure Temperature Gradient Numerical Computation Pressure Gradient Industrial Mathematic Gladush, G. G. aut Enthalten in Journal of applied mechanics and technical physics Kluwer Academic Publishers-Plenum Publishers, 1966 11(1970), 4 vom: Juli, Seite 567-570 (DE-627)129600946 (DE-600)241350-4 (DE-576)015094545 0021-8944 nnns volume:11 year:1970 number:4 month:07 pages:567-570 https://doi.org/10.1007/BF00850840 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_70 AR 11 1970 4 07 567-570 |
language |
English |
source |
Enthalten in Journal of applied mechanics and technical physics 11(1970), 4 vom: Juli, Seite 567-570 volume:11 year:1970 number:4 month:07 pages:567-570 |
sourceStr |
Enthalten in Journal of applied mechanics and technical physics 11(1970), 4 vom: Juli, Seite 567-570 volume:11 year:1970 number:4 month:07 pages:567-570 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Partial Pressure Temperature Gradient Numerical Computation Pressure Gradient Industrial Mathematic |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of applied mechanics and technical physics |
authorswithroles_txt_mv |
Abramov, Yu. Yu. @@aut@@ Gladush, G. G. @@aut@@ |
publishDateDaySort_date |
1970-07-01T00:00:00Z |
hierarchy_top_id |
129600946 |
dewey-sort |
3530 |
id |
OLC2034377613 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034377613</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503104526.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1970 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00850840</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034377613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00850840-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abramov, Yu. Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffusion and thermal slip of a binary gas mixture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1970</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Consultants Bureau 1973</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of the partial pressure gradients. The kinetic equation is solved by an approximate method based on physical considerations. A formula has been obtained analytically for the slip velocity for arbitrary accommodation coefficients as well as for arbitrary gas concentrations and arbitrary molecule masses. The results agree to 1% accuracy with the numerical computations of other authors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Pressure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature Gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure Gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial Mathematic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gladush, G. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied mechanics and technical physics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1966</subfield><subfield code="g">11(1970), 4 vom: Juli, Seite 567-570</subfield><subfield code="w">(DE-627)129600946</subfield><subfield code="w">(DE-600)241350-4</subfield><subfield code="w">(DE-576)015094545</subfield><subfield code="x">0021-8944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:1970</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:567-570</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00850840</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">1970</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">567-570</subfield></datafield></record></collection>
|
author |
Abramov, Yu. Yu. |
spellingShingle |
Abramov, Yu. Yu. ddc 530 misc Partial Pressure misc Temperature Gradient misc Numerical Computation misc Pressure Gradient misc Industrial Mathematic Diffusion and thermal slip of a binary gas mixture |
authorStr |
Abramov, Yu. Yu. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129600946 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0021-8944 |
topic_title |
530 VZ Diffusion and thermal slip of a binary gas mixture Partial Pressure Temperature Gradient Numerical Computation Pressure Gradient Industrial Mathematic |
topic |
ddc 530 misc Partial Pressure misc Temperature Gradient misc Numerical Computation misc Pressure Gradient misc Industrial Mathematic |
topic_unstemmed |
ddc 530 misc Partial Pressure misc Temperature Gradient misc Numerical Computation misc Pressure Gradient misc Industrial Mathematic |
topic_browse |
ddc 530 misc Partial Pressure misc Temperature Gradient misc Numerical Computation misc Pressure Gradient misc Industrial Mathematic |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of applied mechanics and technical physics |
hierarchy_parent_id |
129600946 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of applied mechanics and technical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129600946 (DE-600)241350-4 (DE-576)015094545 |
title |
Diffusion and thermal slip of a binary gas mixture |
ctrlnum |
(DE-627)OLC2034377613 (DE-He213)BF00850840-p |
title_full |
Diffusion and thermal slip of a binary gas mixture |
author_sort |
Abramov, Yu. Yu. |
journal |
Journal of applied mechanics and technical physics |
journalStr |
Journal of applied mechanics and technical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
1970 |
contenttype_str_mv |
txt |
container_start_page |
567 |
author_browse |
Abramov, Yu. Yu. Gladush, G. G. |
container_volume |
11 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Abramov, Yu. Yu. |
doi_str_mv |
10.1007/BF00850840 |
dewey-full |
530 |
title_sort |
diffusion and thermal slip of a binary gas mixture |
title_auth |
Diffusion and thermal slip of a binary gas mixture |
abstract |
Abstract Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of the partial pressure gradients. The kinetic equation is solved by an approximate method based on physical considerations. A formula has been obtained analytically for the slip velocity for arbitrary accommodation coefficients as well as for arbitrary gas concentrations and arbitrary molecule masses. The results agree to 1% accuracy with the numerical computations of other authors. © Consultants Bureau 1973 |
abstractGer |
Abstract Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of the partial pressure gradients. The kinetic equation is solved by an approximate method based on physical considerations. A formula has been obtained analytically for the slip velocity for arbitrary accommodation coefficients as well as for arbitrary gas concentrations and arbitrary molecule masses. The results agree to 1% accuracy with the numerical computations of other authors. © Consultants Bureau 1973 |
abstract_unstemmed |
Abstract Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of the partial pressure gradients. The kinetic equation is solved by an approximate method based on physical considerations. A formula has been obtained analytically for the slip velocity for arbitrary accommodation coefficients as well as for arbitrary gas concentrations and arbitrary molecule masses. The results agree to 1% accuracy with the numerical computations of other authors. © Consultants Bureau 1973 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_11 GBV_ILN_20 GBV_ILN_70 |
container_issue |
4 |
title_short |
Diffusion and thermal slip of a binary gas mixture |
url |
https://doi.org/10.1007/BF00850840 |
remote_bool |
false |
author2 |
Gladush, G. G. |
author2Str |
Gladush, G. G. |
ppnlink |
129600946 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF00850840 |
up_date |
2024-07-03T20:48:24.077Z |
_version_ |
1803592352744341504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034377613</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503104526.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s1970 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF00850840</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034377613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF00850840-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abramov, Yu. Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffusion and thermal slip of a binary gas mixture</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1970</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Consultants Bureau 1973</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let us note that the phenomenon of diffusion slip at a constant gas-mixture temperature has been considered in [1], for example, and thermal slip for a single-component gas in [2]. The slip velocity of a binary gas mixture has been calculated in a field of the temperature gradient and of the partial pressure gradients. The kinetic equation is solved by an approximate method based on physical considerations. A formula has been obtained analytically for the slip velocity for arbitrary accommodation coefficients as well as for arbitrary gas concentrations and arbitrary molecule masses. The results agree to 1% accuracy with the numerical computations of other authors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Pressure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature Gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure Gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial Mathematic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gladush, G. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied mechanics and technical physics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1966</subfield><subfield code="g">11(1970), 4 vom: Juli, Seite 567-570</subfield><subfield code="w">(DE-627)129600946</subfield><subfield code="w">(DE-600)241350-4</subfield><subfield code="w">(DE-576)015094545</subfield><subfield code="x">0021-8944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:1970</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:567-570</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF00850840</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">1970</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">567-570</subfield></datafield></record></collection>
|
score |
7.4028378 |