Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring
Abstract In a biopotential monitoring system, the sensors, the front end circuit, microprocessor, digital signal processor and transmitter are important blocks. The front end circuit is capable of amplifying and conditioning the biosignal. The power requirement of a biopotential monitoring system de...
Ausführliche Beschreibung
Autor*in: |
Sutha, P. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Circuits, systems and signal processing - Springer US, 1982, 39(2019), 6 vom: 20. Nov., Seite 2860-2879 |
---|---|
Übergeordnetes Werk: |
volume:39 ; year:2019 ; number:6 ; day:20 ; month:11 ; pages:2860-2879 |
Links: |
---|
DOI / URN: |
10.1007/s00034-019-01311-x |
---|
Katalog-ID: |
OLC2034858034 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034858034 | ||
003 | DE-627 | ||
005 | 20230504133957.0 | ||
007 | tu | ||
008 | 200819s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00034-019-01311-x |2 doi | |
035 | |a (DE-627)OLC2034858034 | ||
035 | |a (DE-He213)s00034-019-01311-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
100 | 1 | |a Sutha, P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2019 | ||
520 | |a Abstract In a biopotential monitoring system, the sensors, the front end circuit, microprocessor, digital signal processor and transmitter are important blocks. The front end circuit is capable of amplifying and conditioning the biosignal. The power requirement of a biopotential monitoring system depends on the individual blocks present in the system. Direct reduction of the power is not possible in the conventional instrumentation amplifier. The conventional instrumentation amplifier is not suitable for portable applications because it consumes much power and has a low common mode rejection ratio (CMRR). To optimize the power consumption and simplify the system architecture, the front end system adopts two-stage amplifiers. A current-balancing instrumentation amplifier approach that amplifies a biosignal is proposed to improve the noise performance and CMRR and minimize the area, power consumption, and cost. In this CBIA design, passive component mismatch is minimized. To obtain an ECG signal, the output of an instrumentation amplifier signal is further processed by high pass, low pass and notch filters to eliminate muscular noise, motion artefacts and power line interference. The resultant signal is interfaced to a personal computer through a USB/SPI interface after the conversion of the analogue biosignal into digital signals. | ||
650 | 4 | |a Instrumentation amplifier | |
650 | 4 | |a Conventional approach | |
650 | 4 | |a Current-balancing instrumentation amplifier | |
650 | 4 | |a Common mode rejection ratio | |
650 | 4 | |a Power consumption | |
700 | 1 | |a Jayanthi, V. E. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Circuits, systems and signal processing |d Springer US, 1982 |g 39(2019), 6 vom: 20. Nov., Seite 2860-2879 |w (DE-627)130312134 |w (DE-600)588684-3 |w (DE-576)015889939 |x 0278-081X |7 nnns |
773 | 1 | 8 | |g volume:39 |g year:2019 |g number:6 |g day:20 |g month:11 |g pages:2860-2879 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00034-019-01311-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2244 | ||
951 | |a AR | ||
952 | |d 39 |j 2019 |e 6 |b 20 |c 11 |h 2860-2879 |
author_variant |
p s ps v e j ve vej |
---|---|
matchkey_str |
article:0278081X:2019----::mlmnainfbooetaapiirihcnetoaadurnblnigpr |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00034-019-01311-x doi (DE-627)OLC2034858034 (DE-He213)s00034-019-01311-x-p DE-627 ger DE-627 rakwb eng 600 VZ Sutha, P. verfasserin aut Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract In a biopotential monitoring system, the sensors, the front end circuit, microprocessor, digital signal processor and transmitter are important blocks. The front end circuit is capable of amplifying and conditioning the biosignal. The power requirement of a biopotential monitoring system depends on the individual blocks present in the system. Direct reduction of the power is not possible in the conventional instrumentation amplifier. The conventional instrumentation amplifier is not suitable for portable applications because it consumes much power and has a low common mode rejection ratio (CMRR). To optimize the power consumption and simplify the system architecture, the front end system adopts two-stage amplifiers. A current-balancing instrumentation amplifier approach that amplifies a biosignal is proposed to improve the noise performance and CMRR and minimize the area, power consumption, and cost. In this CBIA design, passive component mismatch is minimized. To obtain an ECG signal, the output of an instrumentation amplifier signal is further processed by high pass, low pass and notch filters to eliminate muscular noise, motion artefacts and power line interference. The resultant signal is interfaced to a personal computer through a USB/SPI interface after the conversion of the analogue biosignal into digital signals. Instrumentation amplifier Conventional approach Current-balancing instrumentation amplifier Common mode rejection ratio Power consumption Jayanthi, V. E. aut Enthalten in Circuits, systems and signal processing Springer US, 1982 39(2019), 6 vom: 20. Nov., Seite 2860-2879 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:39 year:2019 number:6 day:20 month:11 pages:2860-2879 https://doi.org/10.1007/s00034-019-01311-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2244 AR 39 2019 6 20 11 2860-2879 |
spelling |
10.1007/s00034-019-01311-x doi (DE-627)OLC2034858034 (DE-He213)s00034-019-01311-x-p DE-627 ger DE-627 rakwb eng 600 VZ Sutha, P. verfasserin aut Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract In a biopotential monitoring system, the sensors, the front end circuit, microprocessor, digital signal processor and transmitter are important blocks. The front end circuit is capable of amplifying and conditioning the biosignal. The power requirement of a biopotential monitoring system depends on the individual blocks present in the system. Direct reduction of the power is not possible in the conventional instrumentation amplifier. The conventional instrumentation amplifier is not suitable for portable applications because it consumes much power and has a low common mode rejection ratio (CMRR). To optimize the power consumption and simplify the system architecture, the front end system adopts two-stage amplifiers. A current-balancing instrumentation amplifier approach that amplifies a biosignal is proposed to improve the noise performance and CMRR and minimize the area, power consumption, and cost. In this CBIA design, passive component mismatch is minimized. To obtain an ECG signal, the output of an instrumentation amplifier signal is further processed by high pass, low pass and notch filters to eliminate muscular noise, motion artefacts and power line interference. The resultant signal is interfaced to a personal computer through a USB/SPI interface after the conversion of the analogue biosignal into digital signals. Instrumentation amplifier Conventional approach Current-balancing instrumentation amplifier Common mode rejection ratio Power consumption Jayanthi, V. E. aut Enthalten in Circuits, systems and signal processing Springer US, 1982 39(2019), 6 vom: 20. Nov., Seite 2860-2879 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:39 year:2019 number:6 day:20 month:11 pages:2860-2879 https://doi.org/10.1007/s00034-019-01311-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2244 AR 39 2019 6 20 11 2860-2879 |
allfields_unstemmed |
10.1007/s00034-019-01311-x doi (DE-627)OLC2034858034 (DE-He213)s00034-019-01311-x-p DE-627 ger DE-627 rakwb eng 600 VZ Sutha, P. verfasserin aut Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract In a biopotential monitoring system, the sensors, the front end circuit, microprocessor, digital signal processor and transmitter are important blocks. The front end circuit is capable of amplifying and conditioning the biosignal. The power requirement of a biopotential monitoring system depends on the individual blocks present in the system. Direct reduction of the power is not possible in the conventional instrumentation amplifier. The conventional instrumentation amplifier is not suitable for portable applications because it consumes much power and has a low common mode rejection ratio (CMRR). To optimize the power consumption and simplify the system architecture, the front end system adopts two-stage amplifiers. A current-balancing instrumentation amplifier approach that amplifies a biosignal is proposed to improve the noise performance and CMRR and minimize the area, power consumption, and cost. In this CBIA design, passive component mismatch is minimized. To obtain an ECG signal, the output of an instrumentation amplifier signal is further processed by high pass, low pass and notch filters to eliminate muscular noise, motion artefacts and power line interference. The resultant signal is interfaced to a personal computer through a USB/SPI interface after the conversion of the analogue biosignal into digital signals. Instrumentation amplifier Conventional approach Current-balancing instrumentation amplifier Common mode rejection ratio Power consumption Jayanthi, V. E. aut Enthalten in Circuits, systems and signal processing Springer US, 1982 39(2019), 6 vom: 20. Nov., Seite 2860-2879 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:39 year:2019 number:6 day:20 month:11 pages:2860-2879 https://doi.org/10.1007/s00034-019-01311-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2244 AR 39 2019 6 20 11 2860-2879 |
allfieldsGer |
10.1007/s00034-019-01311-x doi (DE-627)OLC2034858034 (DE-He213)s00034-019-01311-x-p DE-627 ger DE-627 rakwb eng 600 VZ Sutha, P. verfasserin aut Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract In a biopotential monitoring system, the sensors, the front end circuit, microprocessor, digital signal processor and transmitter are important blocks. The front end circuit is capable of amplifying and conditioning the biosignal. The power requirement of a biopotential monitoring system depends on the individual blocks present in the system. Direct reduction of the power is not possible in the conventional instrumentation amplifier. The conventional instrumentation amplifier is not suitable for portable applications because it consumes much power and has a low common mode rejection ratio (CMRR). To optimize the power consumption and simplify the system architecture, the front end system adopts two-stage amplifiers. A current-balancing instrumentation amplifier approach that amplifies a biosignal is proposed to improve the noise performance and CMRR and minimize the area, power consumption, and cost. In this CBIA design, passive component mismatch is minimized. To obtain an ECG signal, the output of an instrumentation amplifier signal is further processed by high pass, low pass and notch filters to eliminate muscular noise, motion artefacts and power line interference. The resultant signal is interfaced to a personal computer through a USB/SPI interface after the conversion of the analogue biosignal into digital signals. Instrumentation amplifier Conventional approach Current-balancing instrumentation amplifier Common mode rejection ratio Power consumption Jayanthi, V. E. aut Enthalten in Circuits, systems and signal processing Springer US, 1982 39(2019), 6 vom: 20. Nov., Seite 2860-2879 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:39 year:2019 number:6 day:20 month:11 pages:2860-2879 https://doi.org/10.1007/s00034-019-01311-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2244 AR 39 2019 6 20 11 2860-2879 |
allfieldsSound |
10.1007/s00034-019-01311-x doi (DE-627)OLC2034858034 (DE-He213)s00034-019-01311-x-p DE-627 ger DE-627 rakwb eng 600 VZ Sutha, P. verfasserin aut Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract In a biopotential monitoring system, the sensors, the front end circuit, microprocessor, digital signal processor and transmitter are important blocks. The front end circuit is capable of amplifying and conditioning the biosignal. The power requirement of a biopotential monitoring system depends on the individual blocks present in the system. Direct reduction of the power is not possible in the conventional instrumentation amplifier. The conventional instrumentation amplifier is not suitable for portable applications because it consumes much power and has a low common mode rejection ratio (CMRR). To optimize the power consumption and simplify the system architecture, the front end system adopts two-stage amplifiers. A current-balancing instrumentation amplifier approach that amplifies a biosignal is proposed to improve the noise performance and CMRR and minimize the area, power consumption, and cost. In this CBIA design, passive component mismatch is minimized. To obtain an ECG signal, the output of an instrumentation amplifier signal is further processed by high pass, low pass and notch filters to eliminate muscular noise, motion artefacts and power line interference. The resultant signal is interfaced to a personal computer through a USB/SPI interface after the conversion of the analogue biosignal into digital signals. Instrumentation amplifier Conventional approach Current-balancing instrumentation amplifier Common mode rejection ratio Power consumption Jayanthi, V. E. aut Enthalten in Circuits, systems and signal processing Springer US, 1982 39(2019), 6 vom: 20. Nov., Seite 2860-2879 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:39 year:2019 number:6 day:20 month:11 pages:2860-2879 https://doi.org/10.1007/s00034-019-01311-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2244 AR 39 2019 6 20 11 2860-2879 |
language |
English |
source |
Enthalten in Circuits, systems and signal processing 39(2019), 6 vom: 20. Nov., Seite 2860-2879 volume:39 year:2019 number:6 day:20 month:11 pages:2860-2879 |
sourceStr |
Enthalten in Circuits, systems and signal processing 39(2019), 6 vom: 20. Nov., Seite 2860-2879 volume:39 year:2019 number:6 day:20 month:11 pages:2860-2879 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Instrumentation amplifier Conventional approach Current-balancing instrumentation amplifier Common mode rejection ratio Power consumption |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Circuits, systems and signal processing |
authorswithroles_txt_mv |
Sutha, P. @@aut@@ Jayanthi, V. E. @@aut@@ |
publishDateDaySort_date |
2019-11-20T00:00:00Z |
hierarchy_top_id |
130312134 |
dewey-sort |
3600 |
id |
OLC2034858034 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034858034</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504133957.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00034-019-01311-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034858034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00034-019-01311-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sutha, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In a biopotential monitoring system, the sensors, the front end circuit, microprocessor, digital signal processor and transmitter are important blocks. The front end circuit is capable of amplifying and conditioning the biosignal. The power requirement of a biopotential monitoring system depends on the individual blocks present in the system. Direct reduction of the power is not possible in the conventional instrumentation amplifier. The conventional instrumentation amplifier is not suitable for portable applications because it consumes much power and has a low common mode rejection ratio (CMRR). To optimize the power consumption and simplify the system architecture, the front end system adopts two-stage amplifiers. A current-balancing instrumentation amplifier approach that amplifies a biosignal is proposed to improve the noise performance and CMRR and minimize the area, power consumption, and cost. In this CBIA design, passive component mismatch is minimized. To obtain an ECG signal, the output of an instrumentation amplifier signal is further processed by high pass, low pass and notch filters to eliminate muscular noise, motion artefacts and power line interference. The resultant signal is interfaced to a personal computer through a USB/SPI interface after the conversion of the analogue biosignal into digital signals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrumentation amplifier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conventional approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current-balancing instrumentation amplifier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Common mode rejection ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power consumption</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jayanthi, V. E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Circuits, systems and signal processing</subfield><subfield code="d">Springer US, 1982</subfield><subfield code="g">39(2019), 6 vom: 20. Nov., Seite 2860-2879</subfield><subfield code="w">(DE-627)130312134</subfield><subfield code="w">(DE-600)588684-3</subfield><subfield code="w">(DE-576)015889939</subfield><subfield code="x">0278-081X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">day:20</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:2860-2879</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00034-019-01311-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="b">20</subfield><subfield code="c">11</subfield><subfield code="h">2860-2879</subfield></datafield></record></collection>
|
author |
Sutha, P. |
spellingShingle |
Sutha, P. ddc 600 misc Instrumentation amplifier misc Conventional approach misc Current-balancing instrumentation amplifier misc Common mode rejection ratio misc Power consumption Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring |
authorStr |
Sutha, P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130312134 |
format |
Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0278-081X |
topic_title |
600 VZ Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring Instrumentation amplifier Conventional approach Current-balancing instrumentation amplifier Common mode rejection ratio Power consumption |
topic |
ddc 600 misc Instrumentation amplifier misc Conventional approach misc Current-balancing instrumentation amplifier misc Common mode rejection ratio misc Power consumption |
topic_unstemmed |
ddc 600 misc Instrumentation amplifier misc Conventional approach misc Current-balancing instrumentation amplifier misc Common mode rejection ratio misc Power consumption |
topic_browse |
ddc 600 misc Instrumentation amplifier misc Conventional approach misc Current-balancing instrumentation amplifier misc Common mode rejection ratio misc Power consumption |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Circuits, systems and signal processing |
hierarchy_parent_id |
130312134 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Circuits, systems and signal processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 |
title |
Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring |
ctrlnum |
(DE-627)OLC2034858034 (DE-He213)s00034-019-01311-x-p |
title_full |
Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring |
author_sort |
Sutha, P. |
journal |
Circuits, systems and signal processing |
journalStr |
Circuits, systems and signal processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
2860 |
author_browse |
Sutha, P. Jayanthi, V. E. |
container_volume |
39 |
class |
600 VZ |
format_se |
Aufsätze |
author-letter |
Sutha, P. |
doi_str_mv |
10.1007/s00034-019-01311-x |
dewey-full |
600 |
title_sort |
implementation of a biopotential amplifier with a conventional and current-balancing approach for foetal ecg monitoring |
title_auth |
Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring |
abstract |
Abstract In a biopotential monitoring system, the sensors, the front end circuit, microprocessor, digital signal processor and transmitter are important blocks. The front end circuit is capable of amplifying and conditioning the biosignal. The power requirement of a biopotential monitoring system depends on the individual blocks present in the system. Direct reduction of the power is not possible in the conventional instrumentation amplifier. The conventional instrumentation amplifier is not suitable for portable applications because it consumes much power and has a low common mode rejection ratio (CMRR). To optimize the power consumption and simplify the system architecture, the front end system adopts two-stage amplifiers. A current-balancing instrumentation amplifier approach that amplifies a biosignal is proposed to improve the noise performance and CMRR and minimize the area, power consumption, and cost. In this CBIA design, passive component mismatch is minimized. To obtain an ECG signal, the output of an instrumentation amplifier signal is further processed by high pass, low pass and notch filters to eliminate muscular noise, motion artefacts and power line interference. The resultant signal is interfaced to a personal computer through a USB/SPI interface after the conversion of the analogue biosignal into digital signals. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
abstractGer |
Abstract In a biopotential monitoring system, the sensors, the front end circuit, microprocessor, digital signal processor and transmitter are important blocks. The front end circuit is capable of amplifying and conditioning the biosignal. The power requirement of a biopotential monitoring system depends on the individual blocks present in the system. Direct reduction of the power is not possible in the conventional instrumentation amplifier. The conventional instrumentation amplifier is not suitable for portable applications because it consumes much power and has a low common mode rejection ratio (CMRR). To optimize the power consumption and simplify the system architecture, the front end system adopts two-stage amplifiers. A current-balancing instrumentation amplifier approach that amplifies a biosignal is proposed to improve the noise performance and CMRR and minimize the area, power consumption, and cost. In this CBIA design, passive component mismatch is minimized. To obtain an ECG signal, the output of an instrumentation amplifier signal is further processed by high pass, low pass and notch filters to eliminate muscular noise, motion artefacts and power line interference. The resultant signal is interfaced to a personal computer through a USB/SPI interface after the conversion of the analogue biosignal into digital signals. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract In a biopotential monitoring system, the sensors, the front end circuit, microprocessor, digital signal processor and transmitter are important blocks. The front end circuit is capable of amplifying and conditioning the biosignal. The power requirement of a biopotential monitoring system depends on the individual blocks present in the system. Direct reduction of the power is not possible in the conventional instrumentation amplifier. The conventional instrumentation amplifier is not suitable for portable applications because it consumes much power and has a low common mode rejection ratio (CMRR). To optimize the power consumption and simplify the system architecture, the front end system adopts two-stage amplifiers. A current-balancing instrumentation amplifier approach that amplifies a biosignal is proposed to improve the noise performance and CMRR and minimize the area, power consumption, and cost. In this CBIA design, passive component mismatch is minimized. To obtain an ECG signal, the output of an instrumentation amplifier signal is further processed by high pass, low pass and notch filters to eliminate muscular noise, motion artefacts and power line interference. The resultant signal is interfaced to a personal computer through a USB/SPI interface after the conversion of the analogue biosignal into digital signals. © Springer Science+Business Media, LLC, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 GBV_ILN_2244 |
container_issue |
6 |
title_short |
Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring |
url |
https://doi.org/10.1007/s00034-019-01311-x |
remote_bool |
false |
author2 |
Jayanthi, V. E. |
author2Str |
Jayanthi, V. E. |
ppnlink |
130312134 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00034-019-01311-x |
up_date |
2024-07-03T22:44:40.749Z |
_version_ |
1803599668315160576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034858034</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504133957.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00034-019-01311-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034858034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00034-019-01311-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sutha, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Implementation of a Biopotential Amplifier with a Conventional and Current-Balancing Approach for Foetal ECG Monitoring</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In a biopotential monitoring system, the sensors, the front end circuit, microprocessor, digital signal processor and transmitter are important blocks. The front end circuit is capable of amplifying and conditioning the biosignal. The power requirement of a biopotential monitoring system depends on the individual blocks present in the system. Direct reduction of the power is not possible in the conventional instrumentation amplifier. The conventional instrumentation amplifier is not suitable for portable applications because it consumes much power and has a low common mode rejection ratio (CMRR). To optimize the power consumption and simplify the system architecture, the front end system adopts two-stage amplifiers. A current-balancing instrumentation amplifier approach that amplifies a biosignal is proposed to improve the noise performance and CMRR and minimize the area, power consumption, and cost. In this CBIA design, passive component mismatch is minimized. To obtain an ECG signal, the output of an instrumentation amplifier signal is further processed by high pass, low pass and notch filters to eliminate muscular noise, motion artefacts and power line interference. The resultant signal is interfaced to a personal computer through a USB/SPI interface after the conversion of the analogue biosignal into digital signals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrumentation amplifier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conventional approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current-balancing instrumentation amplifier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Common mode rejection ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power consumption</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jayanthi, V. E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Circuits, systems and signal processing</subfield><subfield code="d">Springer US, 1982</subfield><subfield code="g">39(2019), 6 vom: 20. Nov., Seite 2860-2879</subfield><subfield code="w">(DE-627)130312134</subfield><subfield code="w">(DE-600)588684-3</subfield><subfield code="w">(DE-576)015889939</subfield><subfield code="x">0278-081X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">day:20</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:2860-2879</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00034-019-01311-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="b">20</subfield><subfield code="c">11</subfield><subfield code="h">2860-2879</subfield></datafield></record></collection>
|
score |
7.402815 |