Performance evaluation of FMIG clustering using fuzzy validity indexes
Abstract The clustering of high-dimensional data presents a critical computational problem. Therefore, it is convenient to arrange the cluster centres on a grid with a small dimensional space that reduces computational cost and can be easily visualized. Moreover, in real applications there is no sha...
Ausführliche Beschreibung
Autor*in: |
Tlili, Monia [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft computing - Springer Berlin Heidelberg, 1997, 19(2014), 12 vom: 21. Okt., Seite 3515-3528 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2014 ; number:12 ; day:21 ; month:10 ; pages:3515-3528 |
Links: |
---|
DOI / URN: |
10.1007/s00500-014-1478-3 |
---|
Katalog-ID: |
OLC2034879155 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034879155 | ||
003 | DE-627 | ||
005 | 20230502111655.0 | ||
007 | tu | ||
008 | 200820s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-014-1478-3 |2 doi | |
035 | |a (DE-627)OLC2034879155 | ||
035 | |a (DE-He213)s00500-014-1478-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Tlili, Monia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Performance evaluation of FMIG clustering using fuzzy validity indexes |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2014 | ||
520 | |a Abstract The clustering of high-dimensional data presents a critical computational problem. Therefore, it is convenient to arrange the cluster centres on a grid with a small dimensional space that reduces computational cost and can be easily visualized. Moreover, in real applications there is no sharp boundary between classes, real datasets are naturally defined in a fuzzy context. Therefore, fuzzy clustering fits better for complex real datasets to determine the best distribution. Self-organizing map (SOM) technique is appropriate for clustering and vector quantization of high-dimensional data. In this paper we present a new fuzzy learning approach called FMIG (fuzzy multilevel interior growing self-organizing maps). The proposed algorithm is a fuzzy version of MIGSOM (multilevel interior growing self-organizing maps). The main contribution of FMIG is to define a fuzzy process of data mapping and to take into account the fuzzy aspect of high-dimensional real datasets. This new algorithm is able to auto-organize the map accordingly to the fuzzy training property of the nodes. In the second step, the introduced scheme for FMIG is clustered by means of fuzzy C-means (FCM) to discover the interior class distribution of the learned data. The validation of FCM partitions is directed by applying six validity indexes. Superiority of the new method is demonstrated by comparing it with crisp MIGSOM, GSOM (growing SOM) and FKCN (fuzzy Kohonen clustering network) techniques. Thus, our new method shows improvement in term of quantization error, topology preservation and clustering ability. | ||
650 | 4 | |a Fuzzy training | |
650 | 4 | |a Multilevel interior growing self-organizing maps | |
650 | 4 | |a Quantization | |
650 | 4 | |a Topology | |
650 | 4 | |a Fuzzy validy indexes | |
700 | 1 | |a Ayadi, Thouraya |4 aut | |
700 | 1 | |a Hamdani, Tarek M. |4 aut | |
700 | 1 | |a Alimi, Adel M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft computing |d Springer Berlin Heidelberg, 1997 |g 19(2014), 12 vom: 21. Okt., Seite 3515-3528 |w (DE-627)231970536 |w (DE-600)1387526-7 |w (DE-576)060238259 |x 1432-7643 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2014 |g number:12 |g day:21 |g month:10 |g pages:3515-3528 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00500-014-1478-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 19 |j 2014 |e 12 |b 21 |c 10 |h 3515-3528 |
author_variant |
m t mt t a ta t m h tm tmh a m a am ama |
---|---|
matchkey_str |
article:14327643:2014----::efraceautooficutrnuigu |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s00500-014-1478-3 doi (DE-627)OLC2034879155 (DE-He213)s00500-014-1478-3-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Tlili, Monia verfasserin aut Performance evaluation of FMIG clustering using fuzzy validity indexes 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract The clustering of high-dimensional data presents a critical computational problem. Therefore, it is convenient to arrange the cluster centres on a grid with a small dimensional space that reduces computational cost and can be easily visualized. Moreover, in real applications there is no sharp boundary between classes, real datasets are naturally defined in a fuzzy context. Therefore, fuzzy clustering fits better for complex real datasets to determine the best distribution. Self-organizing map (SOM) technique is appropriate for clustering and vector quantization of high-dimensional data. In this paper we present a new fuzzy learning approach called FMIG (fuzzy multilevel interior growing self-organizing maps). The proposed algorithm is a fuzzy version of MIGSOM (multilevel interior growing self-organizing maps). The main contribution of FMIG is to define a fuzzy process of data mapping and to take into account the fuzzy aspect of high-dimensional real datasets. This new algorithm is able to auto-organize the map accordingly to the fuzzy training property of the nodes. In the second step, the introduced scheme for FMIG is clustered by means of fuzzy C-means (FCM) to discover the interior class distribution of the learned data. The validation of FCM partitions is directed by applying six validity indexes. Superiority of the new method is demonstrated by comparing it with crisp MIGSOM, GSOM (growing SOM) and FKCN (fuzzy Kohonen clustering network) techniques. Thus, our new method shows improvement in term of quantization error, topology preservation and clustering ability. Fuzzy training Multilevel interior growing self-organizing maps Quantization Topology Fuzzy validy indexes Ayadi, Thouraya aut Hamdani, Tarek M. aut Alimi, Adel M. aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 19(2014), 12 vom: 21. Okt., Seite 3515-3528 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:19 year:2014 number:12 day:21 month:10 pages:3515-3528 https://doi.org/10.1007/s00500-014-1478-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 19 2014 12 21 10 3515-3528 |
spelling |
10.1007/s00500-014-1478-3 doi (DE-627)OLC2034879155 (DE-He213)s00500-014-1478-3-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Tlili, Monia verfasserin aut Performance evaluation of FMIG clustering using fuzzy validity indexes 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract The clustering of high-dimensional data presents a critical computational problem. Therefore, it is convenient to arrange the cluster centres on a grid with a small dimensional space that reduces computational cost and can be easily visualized. Moreover, in real applications there is no sharp boundary between classes, real datasets are naturally defined in a fuzzy context. Therefore, fuzzy clustering fits better for complex real datasets to determine the best distribution. Self-organizing map (SOM) technique is appropriate for clustering and vector quantization of high-dimensional data. In this paper we present a new fuzzy learning approach called FMIG (fuzzy multilevel interior growing self-organizing maps). The proposed algorithm is a fuzzy version of MIGSOM (multilevel interior growing self-organizing maps). The main contribution of FMIG is to define a fuzzy process of data mapping and to take into account the fuzzy aspect of high-dimensional real datasets. This new algorithm is able to auto-organize the map accordingly to the fuzzy training property of the nodes. In the second step, the introduced scheme for FMIG is clustered by means of fuzzy C-means (FCM) to discover the interior class distribution of the learned data. The validation of FCM partitions is directed by applying six validity indexes. Superiority of the new method is demonstrated by comparing it with crisp MIGSOM, GSOM (growing SOM) and FKCN (fuzzy Kohonen clustering network) techniques. Thus, our new method shows improvement in term of quantization error, topology preservation and clustering ability. Fuzzy training Multilevel interior growing self-organizing maps Quantization Topology Fuzzy validy indexes Ayadi, Thouraya aut Hamdani, Tarek M. aut Alimi, Adel M. aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 19(2014), 12 vom: 21. Okt., Seite 3515-3528 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:19 year:2014 number:12 day:21 month:10 pages:3515-3528 https://doi.org/10.1007/s00500-014-1478-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 19 2014 12 21 10 3515-3528 |
allfields_unstemmed |
10.1007/s00500-014-1478-3 doi (DE-627)OLC2034879155 (DE-He213)s00500-014-1478-3-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Tlili, Monia verfasserin aut Performance evaluation of FMIG clustering using fuzzy validity indexes 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract The clustering of high-dimensional data presents a critical computational problem. Therefore, it is convenient to arrange the cluster centres on a grid with a small dimensional space that reduces computational cost and can be easily visualized. Moreover, in real applications there is no sharp boundary between classes, real datasets are naturally defined in a fuzzy context. Therefore, fuzzy clustering fits better for complex real datasets to determine the best distribution. Self-organizing map (SOM) technique is appropriate for clustering and vector quantization of high-dimensional data. In this paper we present a new fuzzy learning approach called FMIG (fuzzy multilevel interior growing self-organizing maps). The proposed algorithm is a fuzzy version of MIGSOM (multilevel interior growing self-organizing maps). The main contribution of FMIG is to define a fuzzy process of data mapping and to take into account the fuzzy aspect of high-dimensional real datasets. This new algorithm is able to auto-organize the map accordingly to the fuzzy training property of the nodes. In the second step, the introduced scheme for FMIG is clustered by means of fuzzy C-means (FCM) to discover the interior class distribution of the learned data. The validation of FCM partitions is directed by applying six validity indexes. Superiority of the new method is demonstrated by comparing it with crisp MIGSOM, GSOM (growing SOM) and FKCN (fuzzy Kohonen clustering network) techniques. Thus, our new method shows improvement in term of quantization error, topology preservation and clustering ability. Fuzzy training Multilevel interior growing self-organizing maps Quantization Topology Fuzzy validy indexes Ayadi, Thouraya aut Hamdani, Tarek M. aut Alimi, Adel M. aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 19(2014), 12 vom: 21. Okt., Seite 3515-3528 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:19 year:2014 number:12 day:21 month:10 pages:3515-3528 https://doi.org/10.1007/s00500-014-1478-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 19 2014 12 21 10 3515-3528 |
allfieldsGer |
10.1007/s00500-014-1478-3 doi (DE-627)OLC2034879155 (DE-He213)s00500-014-1478-3-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Tlili, Monia verfasserin aut Performance evaluation of FMIG clustering using fuzzy validity indexes 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract The clustering of high-dimensional data presents a critical computational problem. Therefore, it is convenient to arrange the cluster centres on a grid with a small dimensional space that reduces computational cost and can be easily visualized. Moreover, in real applications there is no sharp boundary between classes, real datasets are naturally defined in a fuzzy context. Therefore, fuzzy clustering fits better for complex real datasets to determine the best distribution. Self-organizing map (SOM) technique is appropriate for clustering and vector quantization of high-dimensional data. In this paper we present a new fuzzy learning approach called FMIG (fuzzy multilevel interior growing self-organizing maps). The proposed algorithm is a fuzzy version of MIGSOM (multilevel interior growing self-organizing maps). The main contribution of FMIG is to define a fuzzy process of data mapping and to take into account the fuzzy aspect of high-dimensional real datasets. This new algorithm is able to auto-organize the map accordingly to the fuzzy training property of the nodes. In the second step, the introduced scheme for FMIG is clustered by means of fuzzy C-means (FCM) to discover the interior class distribution of the learned data. The validation of FCM partitions is directed by applying six validity indexes. Superiority of the new method is demonstrated by comparing it with crisp MIGSOM, GSOM (growing SOM) and FKCN (fuzzy Kohonen clustering network) techniques. Thus, our new method shows improvement in term of quantization error, topology preservation and clustering ability. Fuzzy training Multilevel interior growing self-organizing maps Quantization Topology Fuzzy validy indexes Ayadi, Thouraya aut Hamdani, Tarek M. aut Alimi, Adel M. aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 19(2014), 12 vom: 21. Okt., Seite 3515-3528 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:19 year:2014 number:12 day:21 month:10 pages:3515-3528 https://doi.org/10.1007/s00500-014-1478-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 19 2014 12 21 10 3515-3528 |
allfieldsSound |
10.1007/s00500-014-1478-3 doi (DE-627)OLC2034879155 (DE-He213)s00500-014-1478-3-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Tlili, Monia verfasserin aut Performance evaluation of FMIG clustering using fuzzy validity indexes 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract The clustering of high-dimensional data presents a critical computational problem. Therefore, it is convenient to arrange the cluster centres on a grid with a small dimensional space that reduces computational cost and can be easily visualized. Moreover, in real applications there is no sharp boundary between classes, real datasets are naturally defined in a fuzzy context. Therefore, fuzzy clustering fits better for complex real datasets to determine the best distribution. Self-organizing map (SOM) technique is appropriate for clustering and vector quantization of high-dimensional data. In this paper we present a new fuzzy learning approach called FMIG (fuzzy multilevel interior growing self-organizing maps). The proposed algorithm is a fuzzy version of MIGSOM (multilevel interior growing self-organizing maps). The main contribution of FMIG is to define a fuzzy process of data mapping and to take into account the fuzzy aspect of high-dimensional real datasets. This new algorithm is able to auto-organize the map accordingly to the fuzzy training property of the nodes. In the second step, the introduced scheme for FMIG is clustered by means of fuzzy C-means (FCM) to discover the interior class distribution of the learned data. The validation of FCM partitions is directed by applying six validity indexes. Superiority of the new method is demonstrated by comparing it with crisp MIGSOM, GSOM (growing SOM) and FKCN (fuzzy Kohonen clustering network) techniques. Thus, our new method shows improvement in term of quantization error, topology preservation and clustering ability. Fuzzy training Multilevel interior growing self-organizing maps Quantization Topology Fuzzy validy indexes Ayadi, Thouraya aut Hamdani, Tarek M. aut Alimi, Adel M. aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 19(2014), 12 vom: 21. Okt., Seite 3515-3528 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:19 year:2014 number:12 day:21 month:10 pages:3515-3528 https://doi.org/10.1007/s00500-014-1478-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 19 2014 12 21 10 3515-3528 |
language |
English |
source |
Enthalten in Soft computing 19(2014), 12 vom: 21. Okt., Seite 3515-3528 volume:19 year:2014 number:12 day:21 month:10 pages:3515-3528 |
sourceStr |
Enthalten in Soft computing 19(2014), 12 vom: 21. Okt., Seite 3515-3528 volume:19 year:2014 number:12 day:21 month:10 pages:3515-3528 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fuzzy training Multilevel interior growing self-organizing maps Quantization Topology Fuzzy validy indexes |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Soft computing |
authorswithroles_txt_mv |
Tlili, Monia @@aut@@ Ayadi, Thouraya @@aut@@ Hamdani, Tarek M. @@aut@@ Alimi, Adel M. @@aut@@ |
publishDateDaySort_date |
2014-10-21T00:00:00Z |
hierarchy_top_id |
231970536 |
dewey-sort |
14 |
id |
OLC2034879155 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034879155</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111655.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-014-1478-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034879155</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-014-1478-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tlili, Monia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance evaluation of FMIG clustering using fuzzy validity indexes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The clustering of high-dimensional data presents a critical computational problem. Therefore, it is convenient to arrange the cluster centres on a grid with a small dimensional space that reduces computational cost and can be easily visualized. Moreover, in real applications there is no sharp boundary between classes, real datasets are naturally defined in a fuzzy context. Therefore, fuzzy clustering fits better for complex real datasets to determine the best distribution. Self-organizing map (SOM) technique is appropriate for clustering and vector quantization of high-dimensional data. In this paper we present a new fuzzy learning approach called FMIG (fuzzy multilevel interior growing self-organizing maps). The proposed algorithm is a fuzzy version of MIGSOM (multilevel interior growing self-organizing maps). The main contribution of FMIG is to define a fuzzy process of data mapping and to take into account the fuzzy aspect of high-dimensional real datasets. This new algorithm is able to auto-organize the map accordingly to the fuzzy training property of the nodes. In the second step, the introduced scheme for FMIG is clustered by means of fuzzy C-means (FCM) to discover the interior class distribution of the learned data. The validation of FCM partitions is directed by applying six validity indexes. Superiority of the new method is demonstrated by comparing it with crisp MIGSOM, GSOM (growing SOM) and FKCN (fuzzy Kohonen clustering network) techniques. Thus, our new method shows improvement in term of quantization error, topology preservation and clustering ability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy training</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multilevel interior growing self-organizing maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy validy indexes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ayadi, Thouraya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamdani, Tarek M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alimi, Adel M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">19(2014), 12 vom: 21. Okt., Seite 3515-3528</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:12</subfield><subfield code="g">day:21</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:3515-3528</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-014-1478-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2014</subfield><subfield code="e">12</subfield><subfield code="b">21</subfield><subfield code="c">10</subfield><subfield code="h">3515-3528</subfield></datafield></record></collection>
|
author |
Tlili, Monia |
spellingShingle |
Tlili, Monia ddc 004 ssgn 11 misc Fuzzy training misc Multilevel interior growing self-organizing maps misc Quantization misc Topology misc Fuzzy validy indexes Performance evaluation of FMIG clustering using fuzzy validity indexes |
authorStr |
Tlili, Monia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)231970536 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1432-7643 |
topic_title |
004 VZ 11 ssgn Performance evaluation of FMIG clustering using fuzzy validity indexes Fuzzy training Multilevel interior growing self-organizing maps Quantization Topology Fuzzy validy indexes |
topic |
ddc 004 ssgn 11 misc Fuzzy training misc Multilevel interior growing self-organizing maps misc Quantization misc Topology misc Fuzzy validy indexes |
topic_unstemmed |
ddc 004 ssgn 11 misc Fuzzy training misc Multilevel interior growing self-organizing maps misc Quantization misc Topology misc Fuzzy validy indexes |
topic_browse |
ddc 004 ssgn 11 misc Fuzzy training misc Multilevel interior growing self-organizing maps misc Quantization misc Topology misc Fuzzy validy indexes |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Soft computing |
hierarchy_parent_id |
231970536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Soft computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 |
title |
Performance evaluation of FMIG clustering using fuzzy validity indexes |
ctrlnum |
(DE-627)OLC2034879155 (DE-He213)s00500-014-1478-3-p |
title_full |
Performance evaluation of FMIG clustering using fuzzy validity indexes |
author_sort |
Tlili, Monia |
journal |
Soft computing |
journalStr |
Soft computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
3515 |
author_browse |
Tlili, Monia Ayadi, Thouraya Hamdani, Tarek M. Alimi, Adel M. |
container_volume |
19 |
class |
004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Tlili, Monia |
doi_str_mv |
10.1007/s00500-014-1478-3 |
dewey-full |
004 |
title_sort |
performance evaluation of fmig clustering using fuzzy validity indexes |
title_auth |
Performance evaluation of FMIG clustering using fuzzy validity indexes |
abstract |
Abstract The clustering of high-dimensional data presents a critical computational problem. Therefore, it is convenient to arrange the cluster centres on a grid with a small dimensional space that reduces computational cost and can be easily visualized. Moreover, in real applications there is no sharp boundary between classes, real datasets are naturally defined in a fuzzy context. Therefore, fuzzy clustering fits better for complex real datasets to determine the best distribution. Self-organizing map (SOM) technique is appropriate for clustering and vector quantization of high-dimensional data. In this paper we present a new fuzzy learning approach called FMIG (fuzzy multilevel interior growing self-organizing maps). The proposed algorithm is a fuzzy version of MIGSOM (multilevel interior growing self-organizing maps). The main contribution of FMIG is to define a fuzzy process of data mapping and to take into account the fuzzy aspect of high-dimensional real datasets. This new algorithm is able to auto-organize the map accordingly to the fuzzy training property of the nodes. In the second step, the introduced scheme for FMIG is clustered by means of fuzzy C-means (FCM) to discover the interior class distribution of the learned data. The validation of FCM partitions is directed by applying six validity indexes. Superiority of the new method is demonstrated by comparing it with crisp MIGSOM, GSOM (growing SOM) and FKCN (fuzzy Kohonen clustering network) techniques. Thus, our new method shows improvement in term of quantization error, topology preservation and clustering ability. © Springer-Verlag Berlin Heidelberg 2014 |
abstractGer |
Abstract The clustering of high-dimensional data presents a critical computational problem. Therefore, it is convenient to arrange the cluster centres on a grid with a small dimensional space that reduces computational cost and can be easily visualized. Moreover, in real applications there is no sharp boundary between classes, real datasets are naturally defined in a fuzzy context. Therefore, fuzzy clustering fits better for complex real datasets to determine the best distribution. Self-organizing map (SOM) technique is appropriate for clustering and vector quantization of high-dimensional data. In this paper we present a new fuzzy learning approach called FMIG (fuzzy multilevel interior growing self-organizing maps). The proposed algorithm is a fuzzy version of MIGSOM (multilevel interior growing self-organizing maps). The main contribution of FMIG is to define a fuzzy process of data mapping and to take into account the fuzzy aspect of high-dimensional real datasets. This new algorithm is able to auto-organize the map accordingly to the fuzzy training property of the nodes. In the second step, the introduced scheme for FMIG is clustered by means of fuzzy C-means (FCM) to discover the interior class distribution of the learned data. The validation of FCM partitions is directed by applying six validity indexes. Superiority of the new method is demonstrated by comparing it with crisp MIGSOM, GSOM (growing SOM) and FKCN (fuzzy Kohonen clustering network) techniques. Thus, our new method shows improvement in term of quantization error, topology preservation and clustering ability. © Springer-Verlag Berlin Heidelberg 2014 |
abstract_unstemmed |
Abstract The clustering of high-dimensional data presents a critical computational problem. Therefore, it is convenient to arrange the cluster centres on a grid with a small dimensional space that reduces computational cost and can be easily visualized. Moreover, in real applications there is no sharp boundary between classes, real datasets are naturally defined in a fuzzy context. Therefore, fuzzy clustering fits better for complex real datasets to determine the best distribution. Self-organizing map (SOM) technique is appropriate for clustering and vector quantization of high-dimensional data. In this paper we present a new fuzzy learning approach called FMIG (fuzzy multilevel interior growing self-organizing maps). The proposed algorithm is a fuzzy version of MIGSOM (multilevel interior growing self-organizing maps). The main contribution of FMIG is to define a fuzzy process of data mapping and to take into account the fuzzy aspect of high-dimensional real datasets. This new algorithm is able to auto-organize the map accordingly to the fuzzy training property of the nodes. In the second step, the introduced scheme for FMIG is clustered by means of fuzzy C-means (FCM) to discover the interior class distribution of the learned data. The validation of FCM partitions is directed by applying six validity indexes. Superiority of the new method is demonstrated by comparing it with crisp MIGSOM, GSOM (growing SOM) and FKCN (fuzzy Kohonen clustering network) techniques. Thus, our new method shows improvement in term of quantization error, topology preservation and clustering ability. © Springer-Verlag Berlin Heidelberg 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
12 |
title_short |
Performance evaluation of FMIG clustering using fuzzy validity indexes |
url |
https://doi.org/10.1007/s00500-014-1478-3 |
remote_bool |
false |
author2 |
Ayadi, Thouraya Hamdani, Tarek M. Alimi, Adel M. |
author2Str |
Ayadi, Thouraya Hamdani, Tarek M. Alimi, Adel M. |
ppnlink |
231970536 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-014-1478-3 |
up_date |
2024-07-03T22:49:52.554Z |
_version_ |
1803599995272691712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034879155</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111655.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-014-1478-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034879155</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-014-1478-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tlili, Monia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance evaluation of FMIG clustering using fuzzy validity indexes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The clustering of high-dimensional data presents a critical computational problem. Therefore, it is convenient to arrange the cluster centres on a grid with a small dimensional space that reduces computational cost and can be easily visualized. Moreover, in real applications there is no sharp boundary between classes, real datasets are naturally defined in a fuzzy context. Therefore, fuzzy clustering fits better for complex real datasets to determine the best distribution. Self-organizing map (SOM) technique is appropriate for clustering and vector quantization of high-dimensional data. In this paper we present a new fuzzy learning approach called FMIG (fuzzy multilevel interior growing self-organizing maps). The proposed algorithm is a fuzzy version of MIGSOM (multilevel interior growing self-organizing maps). The main contribution of FMIG is to define a fuzzy process of data mapping and to take into account the fuzzy aspect of high-dimensional real datasets. This new algorithm is able to auto-organize the map accordingly to the fuzzy training property of the nodes. In the second step, the introduced scheme for FMIG is clustered by means of fuzzy C-means (FCM) to discover the interior class distribution of the learned data. The validation of FCM partitions is directed by applying six validity indexes. Superiority of the new method is demonstrated by comparing it with crisp MIGSOM, GSOM (growing SOM) and FKCN (fuzzy Kohonen clustering network) techniques. Thus, our new method shows improvement in term of quantization error, topology preservation and clustering ability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy training</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multilevel interior growing self-organizing maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy validy indexes</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ayadi, Thouraya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamdani, Tarek M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alimi, Adel M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">19(2014), 12 vom: 21. Okt., Seite 3515-3528</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:12</subfield><subfield code="g">day:21</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:3515-3528</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-014-1478-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2014</subfield><subfield code="e">12</subfield><subfield code="b">21</subfield><subfield code="c">10</subfield><subfield code="h">3515-3528</subfield></datafield></record></collection>
|
score |
7.4011526 |