On investigation of interdependence between sub-problems of the Travelling Thief Problem
Abstract In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematica...
Ausführliche Beschreibung
Autor*in: |
Mei, Yi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft computing - Springer Berlin Heidelberg, 1997, 20(2014), 1 vom: 17. Okt., Seite 157-172 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2014 ; number:1 ; day:17 ; month:10 ; pages:157-172 |
Links: |
---|
DOI / URN: |
10.1007/s00500-014-1487-2 |
---|
Katalog-ID: |
OLC2034879449 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034879449 | ||
003 | DE-627 | ||
005 | 20230502111712.0 | ||
007 | tu | ||
008 | 200820s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-014-1487-2 |2 doi | |
035 | |a (DE-627)OLC2034879449 | ||
035 | |a (DE-He213)s00500-014-1487-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Mei, Yi |e verfasserin |4 aut | |
245 | 1 | 0 | |a On investigation of interdependence between sub-problems of the Travelling Thief Problem |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2014 | ||
520 | |a Abstract In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematical formulation shows that it is impossible to decompose the problem into independent sub-problems due to the non-linear relationship in the objective function. Therefore, the algorithm for TTP is not straightforward although each sub-problem alone has been investigated intensively. Then, two meta-heuristics are proposed for TTP. One is the Cooperative Co-evolution (CC) that solves the sub-problems separately and transfers the information between them in each generation. The other is the Memetic Algorithm (MA) that solves TTP as a whole. The comparative results showed that MA consistently obtained much better results than both the standard and dynamic versions of CC within comparable computational budget. This indicates the importance of considering the interdependence between sub-problems in an overall problem like TTP. | ||
650 | 4 | |a Combinatorial optimization | |
650 | 4 | |a Evolutionary computation | |
650 | 4 | |a Cooperative Co-evolution | |
650 | 4 | |a Travelling Thief Problem | |
650 | 4 | |a Interdependence | |
700 | 1 | |a Li, Xiaodong |4 aut | |
700 | 1 | |a Yao, Xin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft computing |d Springer Berlin Heidelberg, 1997 |g 20(2014), 1 vom: 17. Okt., Seite 157-172 |w (DE-627)231970536 |w (DE-600)1387526-7 |w (DE-576)060238259 |x 1432-7643 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2014 |g number:1 |g day:17 |g month:10 |g pages:157-172 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00500-014-1487-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 20 |j 2014 |e 1 |b 17 |c 10 |h 157-172 |
author_variant |
y m ym x l xl x y xy |
---|---|
matchkey_str |
article:14327643:2014----::nnetgtooitreedneewesbrbesfht |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s00500-014-1487-2 doi (DE-627)OLC2034879449 (DE-He213)s00500-014-1487-2-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Mei, Yi verfasserin aut On investigation of interdependence between sub-problems of the Travelling Thief Problem 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematical formulation shows that it is impossible to decompose the problem into independent sub-problems due to the non-linear relationship in the objective function. Therefore, the algorithm for TTP is not straightforward although each sub-problem alone has been investigated intensively. Then, two meta-heuristics are proposed for TTP. One is the Cooperative Co-evolution (CC) that solves the sub-problems separately and transfers the information between them in each generation. The other is the Memetic Algorithm (MA) that solves TTP as a whole. The comparative results showed that MA consistently obtained much better results than both the standard and dynamic versions of CC within comparable computational budget. This indicates the importance of considering the interdependence between sub-problems in an overall problem like TTP. Combinatorial optimization Evolutionary computation Cooperative Co-evolution Travelling Thief Problem Interdependence Li, Xiaodong aut Yao, Xin aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 20(2014), 1 vom: 17. Okt., Seite 157-172 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:20 year:2014 number:1 day:17 month:10 pages:157-172 https://doi.org/10.1007/s00500-014-1487-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 20 2014 1 17 10 157-172 |
spelling |
10.1007/s00500-014-1487-2 doi (DE-627)OLC2034879449 (DE-He213)s00500-014-1487-2-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Mei, Yi verfasserin aut On investigation of interdependence between sub-problems of the Travelling Thief Problem 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematical formulation shows that it is impossible to decompose the problem into independent sub-problems due to the non-linear relationship in the objective function. Therefore, the algorithm for TTP is not straightforward although each sub-problem alone has been investigated intensively. Then, two meta-heuristics are proposed for TTP. One is the Cooperative Co-evolution (CC) that solves the sub-problems separately and transfers the information between them in each generation. The other is the Memetic Algorithm (MA) that solves TTP as a whole. The comparative results showed that MA consistently obtained much better results than both the standard and dynamic versions of CC within comparable computational budget. This indicates the importance of considering the interdependence between sub-problems in an overall problem like TTP. Combinatorial optimization Evolutionary computation Cooperative Co-evolution Travelling Thief Problem Interdependence Li, Xiaodong aut Yao, Xin aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 20(2014), 1 vom: 17. Okt., Seite 157-172 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:20 year:2014 number:1 day:17 month:10 pages:157-172 https://doi.org/10.1007/s00500-014-1487-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 20 2014 1 17 10 157-172 |
allfields_unstemmed |
10.1007/s00500-014-1487-2 doi (DE-627)OLC2034879449 (DE-He213)s00500-014-1487-2-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Mei, Yi verfasserin aut On investigation of interdependence between sub-problems of the Travelling Thief Problem 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematical formulation shows that it is impossible to decompose the problem into independent sub-problems due to the non-linear relationship in the objective function. Therefore, the algorithm for TTP is not straightforward although each sub-problem alone has been investigated intensively. Then, two meta-heuristics are proposed for TTP. One is the Cooperative Co-evolution (CC) that solves the sub-problems separately and transfers the information between them in each generation. The other is the Memetic Algorithm (MA) that solves TTP as a whole. The comparative results showed that MA consistently obtained much better results than both the standard and dynamic versions of CC within comparable computational budget. This indicates the importance of considering the interdependence between sub-problems in an overall problem like TTP. Combinatorial optimization Evolutionary computation Cooperative Co-evolution Travelling Thief Problem Interdependence Li, Xiaodong aut Yao, Xin aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 20(2014), 1 vom: 17. Okt., Seite 157-172 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:20 year:2014 number:1 day:17 month:10 pages:157-172 https://doi.org/10.1007/s00500-014-1487-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 20 2014 1 17 10 157-172 |
allfieldsGer |
10.1007/s00500-014-1487-2 doi (DE-627)OLC2034879449 (DE-He213)s00500-014-1487-2-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Mei, Yi verfasserin aut On investigation of interdependence between sub-problems of the Travelling Thief Problem 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematical formulation shows that it is impossible to decompose the problem into independent sub-problems due to the non-linear relationship in the objective function. Therefore, the algorithm for TTP is not straightforward although each sub-problem alone has been investigated intensively. Then, two meta-heuristics are proposed for TTP. One is the Cooperative Co-evolution (CC) that solves the sub-problems separately and transfers the information between them in each generation. The other is the Memetic Algorithm (MA) that solves TTP as a whole. The comparative results showed that MA consistently obtained much better results than both the standard and dynamic versions of CC within comparable computational budget. This indicates the importance of considering the interdependence between sub-problems in an overall problem like TTP. Combinatorial optimization Evolutionary computation Cooperative Co-evolution Travelling Thief Problem Interdependence Li, Xiaodong aut Yao, Xin aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 20(2014), 1 vom: 17. Okt., Seite 157-172 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:20 year:2014 number:1 day:17 month:10 pages:157-172 https://doi.org/10.1007/s00500-014-1487-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 20 2014 1 17 10 157-172 |
allfieldsSound |
10.1007/s00500-014-1487-2 doi (DE-627)OLC2034879449 (DE-He213)s00500-014-1487-2-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Mei, Yi verfasserin aut On investigation of interdependence between sub-problems of the Travelling Thief Problem 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2014 Abstract In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematical formulation shows that it is impossible to decompose the problem into independent sub-problems due to the non-linear relationship in the objective function. Therefore, the algorithm for TTP is not straightforward although each sub-problem alone has been investigated intensively. Then, two meta-heuristics are proposed for TTP. One is the Cooperative Co-evolution (CC) that solves the sub-problems separately and transfers the information between them in each generation. The other is the Memetic Algorithm (MA) that solves TTP as a whole. The comparative results showed that MA consistently obtained much better results than both the standard and dynamic versions of CC within comparable computational budget. This indicates the importance of considering the interdependence between sub-problems in an overall problem like TTP. Combinatorial optimization Evolutionary computation Cooperative Co-evolution Travelling Thief Problem Interdependence Li, Xiaodong aut Yao, Xin aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 20(2014), 1 vom: 17. Okt., Seite 157-172 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:20 year:2014 number:1 day:17 month:10 pages:157-172 https://doi.org/10.1007/s00500-014-1487-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 20 2014 1 17 10 157-172 |
language |
English |
source |
Enthalten in Soft computing 20(2014), 1 vom: 17. Okt., Seite 157-172 volume:20 year:2014 number:1 day:17 month:10 pages:157-172 |
sourceStr |
Enthalten in Soft computing 20(2014), 1 vom: 17. Okt., Seite 157-172 volume:20 year:2014 number:1 day:17 month:10 pages:157-172 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Combinatorial optimization Evolutionary computation Cooperative Co-evolution Travelling Thief Problem Interdependence |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Soft computing |
authorswithroles_txt_mv |
Mei, Yi @@aut@@ Li, Xiaodong @@aut@@ Yao, Xin @@aut@@ |
publishDateDaySort_date |
2014-10-17T00:00:00Z |
hierarchy_top_id |
231970536 |
dewey-sort |
14 |
id |
OLC2034879449 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034879449</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111712.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-014-1487-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034879449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-014-1487-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mei, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On investigation of interdependence between sub-problems of the Travelling Thief Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematical formulation shows that it is impossible to decompose the problem into independent sub-problems due to the non-linear relationship in the objective function. Therefore, the algorithm for TTP is not straightforward although each sub-problem alone has been investigated intensively. Then, two meta-heuristics are proposed for TTP. One is the Cooperative Co-evolution (CC) that solves the sub-problems separately and transfers the information between them in each generation. The other is the Memetic Algorithm (MA) that solves TTP as a whole. The comparative results showed that MA consistently obtained much better results than both the standard and dynamic versions of CC within comparable computational budget. This indicates the importance of considering the interdependence between sub-problems in an overall problem like TTP.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cooperative Co-evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Travelling Thief Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interdependence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaodong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Xin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">20(2014), 1 vom: 17. Okt., Seite 157-172</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:157-172</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-014-1487-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">10</subfield><subfield code="h">157-172</subfield></datafield></record></collection>
|
author |
Mei, Yi |
spellingShingle |
Mei, Yi ddc 004 ssgn 11 misc Combinatorial optimization misc Evolutionary computation misc Cooperative Co-evolution misc Travelling Thief Problem misc Interdependence On investigation of interdependence between sub-problems of the Travelling Thief Problem |
authorStr |
Mei, Yi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)231970536 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1432-7643 |
topic_title |
004 VZ 11 ssgn On investigation of interdependence between sub-problems of the Travelling Thief Problem Combinatorial optimization Evolutionary computation Cooperative Co-evolution Travelling Thief Problem Interdependence |
topic |
ddc 004 ssgn 11 misc Combinatorial optimization misc Evolutionary computation misc Cooperative Co-evolution misc Travelling Thief Problem misc Interdependence |
topic_unstemmed |
ddc 004 ssgn 11 misc Combinatorial optimization misc Evolutionary computation misc Cooperative Co-evolution misc Travelling Thief Problem misc Interdependence |
topic_browse |
ddc 004 ssgn 11 misc Combinatorial optimization misc Evolutionary computation misc Cooperative Co-evolution misc Travelling Thief Problem misc Interdependence |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Soft computing |
hierarchy_parent_id |
231970536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Soft computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 |
title |
On investigation of interdependence between sub-problems of the Travelling Thief Problem |
ctrlnum |
(DE-627)OLC2034879449 (DE-He213)s00500-014-1487-2-p |
title_full |
On investigation of interdependence between sub-problems of the Travelling Thief Problem |
author_sort |
Mei, Yi |
journal |
Soft computing |
journalStr |
Soft computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
157 |
author_browse |
Mei, Yi Li, Xiaodong Yao, Xin |
container_volume |
20 |
class |
004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Mei, Yi |
doi_str_mv |
10.1007/s00500-014-1487-2 |
dewey-full |
004 |
title_sort |
on investigation of interdependence between sub-problems of the travelling thief problem |
title_auth |
On investigation of interdependence between sub-problems of the Travelling Thief Problem |
abstract |
Abstract In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematical formulation shows that it is impossible to decompose the problem into independent sub-problems due to the non-linear relationship in the objective function. Therefore, the algorithm for TTP is not straightforward although each sub-problem alone has been investigated intensively. Then, two meta-heuristics are proposed for TTP. One is the Cooperative Co-evolution (CC) that solves the sub-problems separately and transfers the information between them in each generation. The other is the Memetic Algorithm (MA) that solves TTP as a whole. The comparative results showed that MA consistently obtained much better results than both the standard and dynamic versions of CC within comparable computational budget. This indicates the importance of considering the interdependence between sub-problems in an overall problem like TTP. © Springer-Verlag Berlin Heidelberg 2014 |
abstractGer |
Abstract In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematical formulation shows that it is impossible to decompose the problem into independent sub-problems due to the non-linear relationship in the objective function. Therefore, the algorithm for TTP is not straightforward although each sub-problem alone has been investigated intensively. Then, two meta-heuristics are proposed for TTP. One is the Cooperative Co-evolution (CC) that solves the sub-problems separately and transfers the information between them in each generation. The other is the Memetic Algorithm (MA) that solves TTP as a whole. The comparative results showed that MA consistently obtained much better results than both the standard and dynamic versions of CC within comparable computational budget. This indicates the importance of considering the interdependence between sub-problems in an overall problem like TTP. © Springer-Verlag Berlin Heidelberg 2014 |
abstract_unstemmed |
Abstract In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematical formulation shows that it is impossible to decompose the problem into independent sub-problems due to the non-linear relationship in the objective function. Therefore, the algorithm for TTP is not straightforward although each sub-problem alone has been investigated intensively. Then, two meta-heuristics are proposed for TTP. One is the Cooperative Co-evolution (CC) that solves the sub-problems separately and transfers the information between them in each generation. The other is the Memetic Algorithm (MA) that solves TTP as a whole. The comparative results showed that MA consistently obtained much better results than both the standard and dynamic versions of CC within comparable computational budget. This indicates the importance of considering the interdependence between sub-problems in an overall problem like TTP. © Springer-Verlag Berlin Heidelberg 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
1 |
title_short |
On investigation of interdependence between sub-problems of the Travelling Thief Problem |
url |
https://doi.org/10.1007/s00500-014-1487-2 |
remote_bool |
false |
author2 |
Li, Xiaodong Yao, Xin |
author2Str |
Li, Xiaodong Yao, Xin |
ppnlink |
231970536 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-014-1487-2 |
up_date |
2024-07-03T22:49:57.143Z |
_version_ |
1803600000099287041 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034879449</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111712.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-014-1487-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034879449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-014-1487-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mei, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On investigation of interdependence between sub-problems of the Travelling Thief Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematical formulation shows that it is impossible to decompose the problem into independent sub-problems due to the non-linear relationship in the objective function. Therefore, the algorithm for TTP is not straightforward although each sub-problem alone has been investigated intensively. Then, two meta-heuristics are proposed for TTP. One is the Cooperative Co-evolution (CC) that solves the sub-problems separately and transfers the information between them in each generation. The other is the Memetic Algorithm (MA) that solves TTP as a whole. The comparative results showed that MA consistently obtained much better results than both the standard and dynamic versions of CC within comparable computational budget. This indicates the importance of considering the interdependence between sub-problems in an overall problem like TTP.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cooperative Co-evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Travelling Thief Problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interdependence</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaodong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Xin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">20(2014), 1 vom: 17. Okt., Seite 157-172</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:157-172</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-014-1487-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">10</subfield><subfield code="h">157-172</subfield></datafield></record></collection>
|
score |
7.4009285 |