Adaptive harmony search with best-based search strategy
Abstract Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical...
Ausführliche Beschreibung
Autor*in: |
Guo, Zhaolu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft computing - Springer Berlin Heidelberg, 1997, 22(2016), 4 vom: 03. Nov., Seite 1335-1349 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2016 ; number:4 ; day:03 ; month:11 ; pages:1335-1349 |
Links: |
---|
DOI / URN: |
10.1007/s00500-016-2424-3 |
---|
Katalog-ID: |
OLC2034888898 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034888898 | ||
003 | DE-627 | ||
005 | 20230502111906.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-016-2424-3 |2 doi | |
035 | |a (DE-627)OLC2034888898 | ||
035 | |a (DE-He213)s00500-016-2424-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Guo, Zhaolu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adaptive harmony search with best-based search strategy |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2016 | ||
520 | |a Abstract Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS. | ||
650 | 4 | |a Evolutionary algorithm | |
650 | 4 | |a Harmony search | |
650 | 4 | |a Adaptive | |
650 | 4 | |a Search strategy | |
700 | 1 | |a Yang, Huogen |4 aut | |
700 | 1 | |a Wang, Shenwen |4 aut | |
700 | 1 | |a Zhou, Caiying |4 aut | |
700 | 1 | |a Liu, Xiaosheng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft computing |d Springer Berlin Heidelberg, 1997 |g 22(2016), 4 vom: 03. Nov., Seite 1335-1349 |w (DE-627)231970536 |w (DE-600)1387526-7 |w (DE-576)060238259 |x 1432-7643 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2016 |g number:4 |g day:03 |g month:11 |g pages:1335-1349 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00500-016-2424-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 22 |j 2016 |e 4 |b 03 |c 11 |h 1335-1349 |
author_variant |
z g zg h y hy s w sw c z cz x l xl |
---|---|
matchkey_str |
article:14327643:2016----::dpieamnsacwtbsbsde |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s00500-016-2424-3 doi (DE-627)OLC2034888898 (DE-He213)s00500-016-2424-3-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Guo, Zhaolu verfasserin aut Adaptive harmony search with best-based search strategy 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS. Evolutionary algorithm Harmony search Adaptive Search strategy Yang, Huogen aut Wang, Shenwen aut Zhou, Caiying aut Liu, Xiaosheng aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 22(2016), 4 vom: 03. Nov., Seite 1335-1349 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:22 year:2016 number:4 day:03 month:11 pages:1335-1349 https://doi.org/10.1007/s00500-016-2424-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 22 2016 4 03 11 1335-1349 |
spelling |
10.1007/s00500-016-2424-3 doi (DE-627)OLC2034888898 (DE-He213)s00500-016-2424-3-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Guo, Zhaolu verfasserin aut Adaptive harmony search with best-based search strategy 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS. Evolutionary algorithm Harmony search Adaptive Search strategy Yang, Huogen aut Wang, Shenwen aut Zhou, Caiying aut Liu, Xiaosheng aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 22(2016), 4 vom: 03. Nov., Seite 1335-1349 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:22 year:2016 number:4 day:03 month:11 pages:1335-1349 https://doi.org/10.1007/s00500-016-2424-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 22 2016 4 03 11 1335-1349 |
allfields_unstemmed |
10.1007/s00500-016-2424-3 doi (DE-627)OLC2034888898 (DE-He213)s00500-016-2424-3-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Guo, Zhaolu verfasserin aut Adaptive harmony search with best-based search strategy 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS. Evolutionary algorithm Harmony search Adaptive Search strategy Yang, Huogen aut Wang, Shenwen aut Zhou, Caiying aut Liu, Xiaosheng aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 22(2016), 4 vom: 03. Nov., Seite 1335-1349 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:22 year:2016 number:4 day:03 month:11 pages:1335-1349 https://doi.org/10.1007/s00500-016-2424-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 22 2016 4 03 11 1335-1349 |
allfieldsGer |
10.1007/s00500-016-2424-3 doi (DE-627)OLC2034888898 (DE-He213)s00500-016-2424-3-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Guo, Zhaolu verfasserin aut Adaptive harmony search with best-based search strategy 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS. Evolutionary algorithm Harmony search Adaptive Search strategy Yang, Huogen aut Wang, Shenwen aut Zhou, Caiying aut Liu, Xiaosheng aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 22(2016), 4 vom: 03. Nov., Seite 1335-1349 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:22 year:2016 number:4 day:03 month:11 pages:1335-1349 https://doi.org/10.1007/s00500-016-2424-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 22 2016 4 03 11 1335-1349 |
allfieldsSound |
10.1007/s00500-016-2424-3 doi (DE-627)OLC2034888898 (DE-He213)s00500-016-2424-3-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Guo, Zhaolu verfasserin aut Adaptive harmony search with best-based search strategy 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2016 Abstract Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS. Evolutionary algorithm Harmony search Adaptive Search strategy Yang, Huogen aut Wang, Shenwen aut Zhou, Caiying aut Liu, Xiaosheng aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 22(2016), 4 vom: 03. Nov., Seite 1335-1349 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:22 year:2016 number:4 day:03 month:11 pages:1335-1349 https://doi.org/10.1007/s00500-016-2424-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 22 2016 4 03 11 1335-1349 |
language |
English |
source |
Enthalten in Soft computing 22(2016), 4 vom: 03. Nov., Seite 1335-1349 volume:22 year:2016 number:4 day:03 month:11 pages:1335-1349 |
sourceStr |
Enthalten in Soft computing 22(2016), 4 vom: 03. Nov., Seite 1335-1349 volume:22 year:2016 number:4 day:03 month:11 pages:1335-1349 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Evolutionary algorithm Harmony search Adaptive Search strategy |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Soft computing |
authorswithroles_txt_mv |
Guo, Zhaolu @@aut@@ Yang, Huogen @@aut@@ Wang, Shenwen @@aut@@ Zhou, Caiying @@aut@@ Liu, Xiaosheng @@aut@@ |
publishDateDaySort_date |
2016-11-03T00:00:00Z |
hierarchy_top_id |
231970536 |
dewey-sort |
14 |
id |
OLC2034888898 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034888898</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111906.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-016-2424-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034888898</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-016-2424-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Zhaolu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive harmony search with best-based search strategy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmony search</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Search strategy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Huogen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shenwen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Caiying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiaosheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">22(2016), 4 vom: 03. Nov., Seite 1335-1349</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:03</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1335-1349</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-016-2424-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">03</subfield><subfield code="c">11</subfield><subfield code="h">1335-1349</subfield></datafield></record></collection>
|
author |
Guo, Zhaolu |
spellingShingle |
Guo, Zhaolu ddc 004 ssgn 11 misc Evolutionary algorithm misc Harmony search misc Adaptive misc Search strategy Adaptive harmony search with best-based search strategy |
authorStr |
Guo, Zhaolu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)231970536 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1432-7643 |
topic_title |
004 VZ 11 ssgn Adaptive harmony search with best-based search strategy Evolutionary algorithm Harmony search Adaptive Search strategy |
topic |
ddc 004 ssgn 11 misc Evolutionary algorithm misc Harmony search misc Adaptive misc Search strategy |
topic_unstemmed |
ddc 004 ssgn 11 misc Evolutionary algorithm misc Harmony search misc Adaptive misc Search strategy |
topic_browse |
ddc 004 ssgn 11 misc Evolutionary algorithm misc Harmony search misc Adaptive misc Search strategy |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Soft computing |
hierarchy_parent_id |
231970536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Soft computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 |
title |
Adaptive harmony search with best-based search strategy |
ctrlnum |
(DE-627)OLC2034888898 (DE-He213)s00500-016-2424-3-p |
title_full |
Adaptive harmony search with best-based search strategy |
author_sort |
Guo, Zhaolu |
journal |
Soft computing |
journalStr |
Soft computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1335 |
author_browse |
Guo, Zhaolu Yang, Huogen Wang, Shenwen Zhou, Caiying Liu, Xiaosheng |
container_volume |
22 |
class |
004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Guo, Zhaolu |
doi_str_mv |
10.1007/s00500-016-2424-3 |
dewey-full |
004 |
title_sort |
adaptive harmony search with best-based search strategy |
title_auth |
Adaptive harmony search with best-based search strategy |
abstract |
Abstract Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS. © Springer-Verlag Berlin Heidelberg 2016 |
abstractGer |
Abstract Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS. © Springer-Verlag Berlin Heidelberg 2016 |
abstract_unstemmed |
Abstract Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS. © Springer-Verlag Berlin Heidelberg 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
4 |
title_short |
Adaptive harmony search with best-based search strategy |
url |
https://doi.org/10.1007/s00500-016-2424-3 |
remote_bool |
false |
author2 |
Yang, Huogen Wang, Shenwen Zhou, Caiying Liu, Xiaosheng |
author2Str |
Yang, Huogen Wang, Shenwen Zhou, Caiying Liu, Xiaosheng |
ppnlink |
231970536 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-016-2424-3 |
up_date |
2024-07-03T22:52:29.262Z |
_version_ |
1803600159585599488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034888898</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111906.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-016-2424-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034888898</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-016-2424-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Zhaolu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive harmony search with best-based search strategy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmony search</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Search strategy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Huogen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shenwen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Caiying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiaosheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">22(2016), 4 vom: 03. Nov., Seite 1335-1349</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">day:03</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1335-1349</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-016-2424-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="b">03</subfield><subfield code="c">11</subfield><subfield code="h">1335-1349</subfield></datafield></record></collection>
|
score |
7.402231 |