Unknown but interesting recommendation using social penetration
Abstract With the recent rise in popularity of social networks, millions of users have included social network Web sites into their daily lives. Traditional social recommendation systems suggest items with high popularity, familiarity, and similarity to users. Such recommendation processes might enc...
Ausführliche Beschreibung
Autor*in: |
Huang, Jen-Wei [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft computing - Springer Berlin Heidelberg, 1997, 23(2018), 16 vom: 11. Juli, Seite 7249-7262 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2018 ; number:16 ; day:11 ; month:07 ; pages:7249-7262 |
Links: |
---|
DOI / URN: |
10.1007/s00500-018-3371-y |
---|
Katalog-ID: |
OLC2034899008 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034899008 | ||
003 | DE-627 | ||
005 | 20230502111940.0 | ||
007 | tu | ||
008 | 200820s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-018-3371-y |2 doi | |
035 | |a (DE-627)OLC2034899008 | ||
035 | |a (DE-He213)s00500-018-3371-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Huang, Jen-Wei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Unknown but interesting recommendation using social penetration |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2018 | ||
520 | |a Abstract With the recent rise in popularity of social networks, millions of users have included social network Web sites into their daily lives. Traditional social recommendation systems suggest items with high popularity, familiarity, and similarity to users. Such recommendation processes might encounter two problems: (1) if the recommended item is very popular, the target user may already be familiar with it; (2) the target user may not be interested in items recommended by users familiar to them. To improve upon traditional recommendation systems, we propose a SPUBI algorithm to discover unknown but interesting items for users using social penetration phenomenon. SPUBI considers the popularity of items, familiarity of other users, similarity of users, users interests and categories, and item freshness to obtain a social penetration score, which are used to generate a recommendation list to the target user. Experimental results demonstrate that the proposed SPUBI algorithm can provide a satisfactory recommendation list while discovering unknown but interesting items effectively. | ||
650 | 4 | |a Social network analysis | |
650 | 4 | |a Recommendation system | |
650 | 4 | |a Unknown but interesting | |
700 | 1 | |a Ma, Hao-Shang |0 (orcid)0000-0001-8919-4021 |4 aut | |
700 | 1 | |a Chung, Chih-Chin |4 aut | |
700 | 1 | |a Jian, Zhi-Jia |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft computing |d Springer Berlin Heidelberg, 1997 |g 23(2018), 16 vom: 11. Juli, Seite 7249-7262 |w (DE-627)231970536 |w (DE-600)1387526-7 |w (DE-576)060238259 |x 1432-7643 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2018 |g number:16 |g day:11 |g month:07 |g pages:7249-7262 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00500-018-3371-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 23 |j 2018 |e 16 |b 11 |c 07 |h 7249-7262 |
author_variant |
j w h jwh h s m hsm c c c ccc z j j zjj |
---|---|
matchkey_str |
article:14327643:2018----::nnwbtneetnrcmedtouigo |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s00500-018-3371-y doi (DE-627)OLC2034899008 (DE-He213)s00500-018-3371-y-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Huang, Jen-Wei verfasserin aut Unknown but interesting recommendation using social penetration 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract With the recent rise in popularity of social networks, millions of users have included social network Web sites into their daily lives. Traditional social recommendation systems suggest items with high popularity, familiarity, and similarity to users. Such recommendation processes might encounter two problems: (1) if the recommended item is very popular, the target user may already be familiar with it; (2) the target user may not be interested in items recommended by users familiar to them. To improve upon traditional recommendation systems, we propose a SPUBI algorithm to discover unknown but interesting items for users using social penetration phenomenon. SPUBI considers the popularity of items, familiarity of other users, similarity of users, users interests and categories, and item freshness to obtain a social penetration score, which are used to generate a recommendation list to the target user. Experimental results demonstrate that the proposed SPUBI algorithm can provide a satisfactory recommendation list while discovering unknown but interesting items effectively. Social network analysis Recommendation system Unknown but interesting Ma, Hao-Shang (orcid)0000-0001-8919-4021 aut Chung, Chih-Chin aut Jian, Zhi-Jia aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 23(2018), 16 vom: 11. Juli, Seite 7249-7262 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:23 year:2018 number:16 day:11 month:07 pages:7249-7262 https://doi.org/10.1007/s00500-018-3371-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2018 16 11 07 7249-7262 |
spelling |
10.1007/s00500-018-3371-y doi (DE-627)OLC2034899008 (DE-He213)s00500-018-3371-y-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Huang, Jen-Wei verfasserin aut Unknown but interesting recommendation using social penetration 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract With the recent rise in popularity of social networks, millions of users have included social network Web sites into their daily lives. Traditional social recommendation systems suggest items with high popularity, familiarity, and similarity to users. Such recommendation processes might encounter two problems: (1) if the recommended item is very popular, the target user may already be familiar with it; (2) the target user may not be interested in items recommended by users familiar to them. To improve upon traditional recommendation systems, we propose a SPUBI algorithm to discover unknown but interesting items for users using social penetration phenomenon. SPUBI considers the popularity of items, familiarity of other users, similarity of users, users interests and categories, and item freshness to obtain a social penetration score, which are used to generate a recommendation list to the target user. Experimental results demonstrate that the proposed SPUBI algorithm can provide a satisfactory recommendation list while discovering unknown but interesting items effectively. Social network analysis Recommendation system Unknown but interesting Ma, Hao-Shang (orcid)0000-0001-8919-4021 aut Chung, Chih-Chin aut Jian, Zhi-Jia aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 23(2018), 16 vom: 11. Juli, Seite 7249-7262 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:23 year:2018 number:16 day:11 month:07 pages:7249-7262 https://doi.org/10.1007/s00500-018-3371-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2018 16 11 07 7249-7262 |
allfields_unstemmed |
10.1007/s00500-018-3371-y doi (DE-627)OLC2034899008 (DE-He213)s00500-018-3371-y-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Huang, Jen-Wei verfasserin aut Unknown but interesting recommendation using social penetration 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract With the recent rise in popularity of social networks, millions of users have included social network Web sites into their daily lives. Traditional social recommendation systems suggest items with high popularity, familiarity, and similarity to users. Such recommendation processes might encounter two problems: (1) if the recommended item is very popular, the target user may already be familiar with it; (2) the target user may not be interested in items recommended by users familiar to them. To improve upon traditional recommendation systems, we propose a SPUBI algorithm to discover unknown but interesting items for users using social penetration phenomenon. SPUBI considers the popularity of items, familiarity of other users, similarity of users, users interests and categories, and item freshness to obtain a social penetration score, which are used to generate a recommendation list to the target user. Experimental results demonstrate that the proposed SPUBI algorithm can provide a satisfactory recommendation list while discovering unknown but interesting items effectively. Social network analysis Recommendation system Unknown but interesting Ma, Hao-Shang (orcid)0000-0001-8919-4021 aut Chung, Chih-Chin aut Jian, Zhi-Jia aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 23(2018), 16 vom: 11. Juli, Seite 7249-7262 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:23 year:2018 number:16 day:11 month:07 pages:7249-7262 https://doi.org/10.1007/s00500-018-3371-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2018 16 11 07 7249-7262 |
allfieldsGer |
10.1007/s00500-018-3371-y doi (DE-627)OLC2034899008 (DE-He213)s00500-018-3371-y-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Huang, Jen-Wei verfasserin aut Unknown but interesting recommendation using social penetration 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract With the recent rise in popularity of social networks, millions of users have included social network Web sites into their daily lives. Traditional social recommendation systems suggest items with high popularity, familiarity, and similarity to users. Such recommendation processes might encounter two problems: (1) if the recommended item is very popular, the target user may already be familiar with it; (2) the target user may not be interested in items recommended by users familiar to them. To improve upon traditional recommendation systems, we propose a SPUBI algorithm to discover unknown but interesting items for users using social penetration phenomenon. SPUBI considers the popularity of items, familiarity of other users, similarity of users, users interests and categories, and item freshness to obtain a social penetration score, which are used to generate a recommendation list to the target user. Experimental results demonstrate that the proposed SPUBI algorithm can provide a satisfactory recommendation list while discovering unknown but interesting items effectively. Social network analysis Recommendation system Unknown but interesting Ma, Hao-Shang (orcid)0000-0001-8919-4021 aut Chung, Chih-Chin aut Jian, Zhi-Jia aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 23(2018), 16 vom: 11. Juli, Seite 7249-7262 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:23 year:2018 number:16 day:11 month:07 pages:7249-7262 https://doi.org/10.1007/s00500-018-3371-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2018 16 11 07 7249-7262 |
allfieldsSound |
10.1007/s00500-018-3371-y doi (DE-627)OLC2034899008 (DE-He213)s00500-018-3371-y-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Huang, Jen-Wei verfasserin aut Unknown but interesting recommendation using social penetration 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract With the recent rise in popularity of social networks, millions of users have included social network Web sites into their daily lives. Traditional social recommendation systems suggest items with high popularity, familiarity, and similarity to users. Such recommendation processes might encounter two problems: (1) if the recommended item is very popular, the target user may already be familiar with it; (2) the target user may not be interested in items recommended by users familiar to them. To improve upon traditional recommendation systems, we propose a SPUBI algorithm to discover unknown but interesting items for users using social penetration phenomenon. SPUBI considers the popularity of items, familiarity of other users, similarity of users, users interests and categories, and item freshness to obtain a social penetration score, which are used to generate a recommendation list to the target user. Experimental results demonstrate that the proposed SPUBI algorithm can provide a satisfactory recommendation list while discovering unknown but interesting items effectively. Social network analysis Recommendation system Unknown but interesting Ma, Hao-Shang (orcid)0000-0001-8919-4021 aut Chung, Chih-Chin aut Jian, Zhi-Jia aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 23(2018), 16 vom: 11. Juli, Seite 7249-7262 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:23 year:2018 number:16 day:11 month:07 pages:7249-7262 https://doi.org/10.1007/s00500-018-3371-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2018 16 11 07 7249-7262 |
language |
English |
source |
Enthalten in Soft computing 23(2018), 16 vom: 11. Juli, Seite 7249-7262 volume:23 year:2018 number:16 day:11 month:07 pages:7249-7262 |
sourceStr |
Enthalten in Soft computing 23(2018), 16 vom: 11. Juli, Seite 7249-7262 volume:23 year:2018 number:16 day:11 month:07 pages:7249-7262 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Social network analysis Recommendation system Unknown but interesting |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Soft computing |
authorswithroles_txt_mv |
Huang, Jen-Wei @@aut@@ Ma, Hao-Shang @@aut@@ Chung, Chih-Chin @@aut@@ Jian, Zhi-Jia @@aut@@ |
publishDateDaySort_date |
2018-07-11T00:00:00Z |
hierarchy_top_id |
231970536 |
dewey-sort |
14 |
id |
OLC2034899008 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034899008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111940.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-018-3371-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034899008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-018-3371-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Jen-Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unknown but interesting recommendation using social penetration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With the recent rise in popularity of social networks, millions of users have included social network Web sites into their daily lives. Traditional social recommendation systems suggest items with high popularity, familiarity, and similarity to users. Such recommendation processes might encounter two problems: (1) if the recommended item is very popular, the target user may already be familiar with it; (2) the target user may not be interested in items recommended by users familiar to them. To improve upon traditional recommendation systems, we propose a SPUBI algorithm to discover unknown but interesting items for users using social penetration phenomenon. SPUBI considers the popularity of items, familiarity of other users, similarity of users, users interests and categories, and item freshness to obtain a social penetration score, which are used to generate a recommendation list to the target user. Experimental results demonstrate that the proposed SPUBI algorithm can provide a satisfactory recommendation list while discovering unknown but interesting items effectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social network analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recommendation system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unknown but interesting</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Hao-Shang</subfield><subfield code="0">(orcid)0000-0001-8919-4021</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chung, Chih-Chin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jian, Zhi-Jia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">23(2018), 16 vom: 11. Juli, Seite 7249-7262</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:16</subfield><subfield code="g">day:11</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:7249-7262</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-018-3371-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2018</subfield><subfield code="e">16</subfield><subfield code="b">11</subfield><subfield code="c">07</subfield><subfield code="h">7249-7262</subfield></datafield></record></collection>
|
author |
Huang, Jen-Wei |
spellingShingle |
Huang, Jen-Wei ddc 004 ssgn 11 misc Social network analysis misc Recommendation system misc Unknown but interesting Unknown but interesting recommendation using social penetration |
authorStr |
Huang, Jen-Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)231970536 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1432-7643 |
topic_title |
004 VZ 11 ssgn Unknown but interesting recommendation using social penetration Social network analysis Recommendation system Unknown but interesting |
topic |
ddc 004 ssgn 11 misc Social network analysis misc Recommendation system misc Unknown but interesting |
topic_unstemmed |
ddc 004 ssgn 11 misc Social network analysis misc Recommendation system misc Unknown but interesting |
topic_browse |
ddc 004 ssgn 11 misc Social network analysis misc Recommendation system misc Unknown but interesting |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Soft computing |
hierarchy_parent_id |
231970536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Soft computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 |
title |
Unknown but interesting recommendation using social penetration |
ctrlnum |
(DE-627)OLC2034899008 (DE-He213)s00500-018-3371-y-p |
title_full |
Unknown but interesting recommendation using social penetration |
author_sort |
Huang, Jen-Wei |
journal |
Soft computing |
journalStr |
Soft computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
7249 |
author_browse |
Huang, Jen-Wei Ma, Hao-Shang Chung, Chih-Chin Jian, Zhi-Jia |
container_volume |
23 |
class |
004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Huang, Jen-Wei |
doi_str_mv |
10.1007/s00500-018-3371-y |
normlink |
(ORCID)0000-0001-8919-4021 |
normlink_prefix_str_mv |
(orcid)0000-0001-8919-4021 |
dewey-full |
004 |
title_sort |
unknown but interesting recommendation using social penetration |
title_auth |
Unknown but interesting recommendation using social penetration |
abstract |
Abstract With the recent rise in popularity of social networks, millions of users have included social network Web sites into their daily lives. Traditional social recommendation systems suggest items with high popularity, familiarity, and similarity to users. Such recommendation processes might encounter two problems: (1) if the recommended item is very popular, the target user may already be familiar with it; (2) the target user may not be interested in items recommended by users familiar to them. To improve upon traditional recommendation systems, we propose a SPUBI algorithm to discover unknown but interesting items for users using social penetration phenomenon. SPUBI considers the popularity of items, familiarity of other users, similarity of users, users interests and categories, and item freshness to obtain a social penetration score, which are used to generate a recommendation list to the target user. Experimental results demonstrate that the proposed SPUBI algorithm can provide a satisfactory recommendation list while discovering unknown but interesting items effectively. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstractGer |
Abstract With the recent rise in popularity of social networks, millions of users have included social network Web sites into their daily lives. Traditional social recommendation systems suggest items with high popularity, familiarity, and similarity to users. Such recommendation processes might encounter two problems: (1) if the recommended item is very popular, the target user may already be familiar with it; (2) the target user may not be interested in items recommended by users familiar to them. To improve upon traditional recommendation systems, we propose a SPUBI algorithm to discover unknown but interesting items for users using social penetration phenomenon. SPUBI considers the popularity of items, familiarity of other users, similarity of users, users interests and categories, and item freshness to obtain a social penetration score, which are used to generate a recommendation list to the target user. Experimental results demonstrate that the proposed SPUBI algorithm can provide a satisfactory recommendation list while discovering unknown but interesting items effectively. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract With the recent rise in popularity of social networks, millions of users have included social network Web sites into their daily lives. Traditional social recommendation systems suggest items with high popularity, familiarity, and similarity to users. Such recommendation processes might encounter two problems: (1) if the recommended item is very popular, the target user may already be familiar with it; (2) the target user may not be interested in items recommended by users familiar to them. To improve upon traditional recommendation systems, we propose a SPUBI algorithm to discover unknown but interesting items for users using social penetration phenomenon. SPUBI considers the popularity of items, familiarity of other users, similarity of users, users interests and categories, and item freshness to obtain a social penetration score, which are used to generate a recommendation list to the target user. Experimental results demonstrate that the proposed SPUBI algorithm can provide a satisfactory recommendation list while discovering unknown but interesting items effectively. © Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
16 |
title_short |
Unknown but interesting recommendation using social penetration |
url |
https://doi.org/10.1007/s00500-018-3371-y |
remote_bool |
false |
author2 |
Ma, Hao-Shang Chung, Chih-Chin Jian, Zhi-Jia |
author2Str |
Ma, Hao-Shang Chung, Chih-Chin Jian, Zhi-Jia |
ppnlink |
231970536 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-018-3371-y |
up_date |
2024-07-03T22:55:17.923Z |
_version_ |
1803600336440524800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034899008</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111940.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-018-3371-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034899008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-018-3371-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Jen-Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unknown but interesting recommendation using social penetration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract With the recent rise in popularity of social networks, millions of users have included social network Web sites into their daily lives. Traditional social recommendation systems suggest items with high popularity, familiarity, and similarity to users. Such recommendation processes might encounter two problems: (1) if the recommended item is very popular, the target user may already be familiar with it; (2) the target user may not be interested in items recommended by users familiar to them. To improve upon traditional recommendation systems, we propose a SPUBI algorithm to discover unknown but interesting items for users using social penetration phenomenon. SPUBI considers the popularity of items, familiarity of other users, similarity of users, users interests and categories, and item freshness to obtain a social penetration score, which are used to generate a recommendation list to the target user. Experimental results demonstrate that the proposed SPUBI algorithm can provide a satisfactory recommendation list while discovering unknown but interesting items effectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social network analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recommendation system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unknown but interesting</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Hao-Shang</subfield><subfield code="0">(orcid)0000-0001-8919-4021</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chung, Chih-Chin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jian, Zhi-Jia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">23(2018), 16 vom: 11. Juli, Seite 7249-7262</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:16</subfield><subfield code="g">day:11</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:7249-7262</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-018-3371-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2018</subfield><subfield code="e">16</subfield><subfield code="b">11</subfield><subfield code="c">07</subfield><subfield code="h">7249-7262</subfield></datafield></record></collection>
|
score |
7.400467 |