Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics
Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot...
Ausführliche Beschreibung
Autor*in: |
Coroianu, Lucian [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
Approximation of fuzzy numbers |
---|
Anmerkung: |
© The Author(s) 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft computing - Springer Berlin Heidelberg, 1997, 23(2019), 19 vom: 14. Feb., Seite 9491-9505 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2019 ; number:19 ; day:14 ; month:02 ; pages:9491-9505 |
Links: |
---|
DOI / URN: |
10.1007/s00500-019-03800-2 |
---|
Katalog-ID: |
OLC2034900359 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034900359 | ||
003 | DE-627 | ||
005 | 20230502111956.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-019-03800-2 |2 doi | |
035 | |a (DE-627)OLC2034900359 | ||
035 | |a (DE-He213)s00500-019-03800-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Coroianu, Lucian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2019 | ||
520 | |a Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot ($$n\ge 2$$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. | ||
650 | 4 | |a Approximation of fuzzy numbers | |
650 | 4 | |a Calculations on fuzzy numbers | |
650 | 4 | |a Characteristics of fuzzy numbers | |
650 | 4 | |a Fuzzy number | |
650 | 4 | |a Piecewise linear approximation | |
700 | 1 | |a Gagolewski, Marek |4 aut | |
700 | 1 | |a Grzegorzewski, Przemyslaw |0 (orcid)0000-0002-5191-4123 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft computing |d Springer Berlin Heidelberg, 1997 |g 23(2019), 19 vom: 14. Feb., Seite 9491-9505 |w (DE-627)231970536 |w (DE-600)1387526-7 |w (DE-576)060238259 |x 1432-7643 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2019 |g number:19 |g day:14 |g month:02 |g pages:9491-9505 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00500-019-03800-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 23 |j 2019 |e 19 |b 14 |c 02 |h 9491-9505 |
author_variant |
l c lc m g mg p g pg |
---|---|
matchkey_str |
article:14327643:2019----::icwslnaapoiainfuznmesloihsrtmtcprtosn |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00500-019-03800-2 doi (DE-627)OLC2034900359 (DE-He213)s00500-019-03800-2-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Coroianu, Lucian verfasserin aut Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot ($$n\ge 2$$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. Approximation of fuzzy numbers Calculations on fuzzy numbers Characteristics of fuzzy numbers Fuzzy number Piecewise linear approximation Gagolewski, Marek aut Grzegorzewski, Przemyslaw (orcid)0000-0002-5191-4123 aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 23(2019), 19 vom: 14. Feb., Seite 9491-9505 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 https://doi.org/10.1007/s00500-019-03800-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2019 19 14 02 9491-9505 |
spelling |
10.1007/s00500-019-03800-2 doi (DE-627)OLC2034900359 (DE-He213)s00500-019-03800-2-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Coroianu, Lucian verfasserin aut Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot ($$n\ge 2$$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. Approximation of fuzzy numbers Calculations on fuzzy numbers Characteristics of fuzzy numbers Fuzzy number Piecewise linear approximation Gagolewski, Marek aut Grzegorzewski, Przemyslaw (orcid)0000-0002-5191-4123 aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 23(2019), 19 vom: 14. Feb., Seite 9491-9505 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 https://doi.org/10.1007/s00500-019-03800-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2019 19 14 02 9491-9505 |
allfields_unstemmed |
10.1007/s00500-019-03800-2 doi (DE-627)OLC2034900359 (DE-He213)s00500-019-03800-2-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Coroianu, Lucian verfasserin aut Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot ($$n\ge 2$$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. Approximation of fuzzy numbers Calculations on fuzzy numbers Characteristics of fuzzy numbers Fuzzy number Piecewise linear approximation Gagolewski, Marek aut Grzegorzewski, Przemyslaw (orcid)0000-0002-5191-4123 aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 23(2019), 19 vom: 14. Feb., Seite 9491-9505 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 https://doi.org/10.1007/s00500-019-03800-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2019 19 14 02 9491-9505 |
allfieldsGer |
10.1007/s00500-019-03800-2 doi (DE-627)OLC2034900359 (DE-He213)s00500-019-03800-2-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Coroianu, Lucian verfasserin aut Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot ($$n\ge 2$$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. Approximation of fuzzy numbers Calculations on fuzzy numbers Characteristics of fuzzy numbers Fuzzy number Piecewise linear approximation Gagolewski, Marek aut Grzegorzewski, Przemyslaw (orcid)0000-0002-5191-4123 aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 23(2019), 19 vom: 14. Feb., Seite 9491-9505 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 https://doi.org/10.1007/s00500-019-03800-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2019 19 14 02 9491-9505 |
allfieldsSound |
10.1007/s00500-019-03800-2 doi (DE-627)OLC2034900359 (DE-He213)s00500-019-03800-2-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Coroianu, Lucian verfasserin aut Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2019 Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot ($$n\ge 2$$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. Approximation of fuzzy numbers Calculations on fuzzy numbers Characteristics of fuzzy numbers Fuzzy number Piecewise linear approximation Gagolewski, Marek aut Grzegorzewski, Przemyslaw (orcid)0000-0002-5191-4123 aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 23(2019), 19 vom: 14. Feb., Seite 9491-9505 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 https://doi.org/10.1007/s00500-019-03800-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2019 19 14 02 9491-9505 |
language |
English |
source |
Enthalten in Soft computing 23(2019), 19 vom: 14. Feb., Seite 9491-9505 volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 |
sourceStr |
Enthalten in Soft computing 23(2019), 19 vom: 14. Feb., Seite 9491-9505 volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Approximation of fuzzy numbers Calculations on fuzzy numbers Characteristics of fuzzy numbers Fuzzy number Piecewise linear approximation |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Soft computing |
authorswithroles_txt_mv |
Coroianu, Lucian @@aut@@ Gagolewski, Marek @@aut@@ Grzegorzewski, Przemyslaw @@aut@@ |
publishDateDaySort_date |
2019-02-14T00:00:00Z |
hierarchy_top_id |
231970536 |
dewey-sort |
14 |
id |
OLC2034900359 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034900359</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111956.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-019-03800-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034900359</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-019-03800-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coroianu, Lucian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot ($$n\ge 2$$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation of fuzzy numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculations on fuzzy numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characteristics of fuzzy numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piecewise linear approximation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gagolewski, Marek</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grzegorzewski, Przemyslaw</subfield><subfield code="0">(orcid)0000-0002-5191-4123</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">23(2019), 19 vom: 14. Feb., Seite 9491-9505</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:19</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:9491-9505</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-019-03800-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2019</subfield><subfield code="e">19</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield><subfield code="h">9491-9505</subfield></datafield></record></collection>
|
author |
Coroianu, Lucian |
spellingShingle |
Coroianu, Lucian ddc 004 ssgn 11 misc Approximation of fuzzy numbers misc Calculations on fuzzy numbers misc Characteristics of fuzzy numbers misc Fuzzy number misc Piecewise linear approximation Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
authorStr |
Coroianu, Lucian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)231970536 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1432-7643 |
topic_title |
004 VZ 11 ssgn Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics Approximation of fuzzy numbers Calculations on fuzzy numbers Characteristics of fuzzy numbers Fuzzy number Piecewise linear approximation |
topic |
ddc 004 ssgn 11 misc Approximation of fuzzy numbers misc Calculations on fuzzy numbers misc Characteristics of fuzzy numbers misc Fuzzy number misc Piecewise linear approximation |
topic_unstemmed |
ddc 004 ssgn 11 misc Approximation of fuzzy numbers misc Calculations on fuzzy numbers misc Characteristics of fuzzy numbers misc Fuzzy number misc Piecewise linear approximation |
topic_browse |
ddc 004 ssgn 11 misc Approximation of fuzzy numbers misc Calculations on fuzzy numbers misc Characteristics of fuzzy numbers misc Fuzzy number misc Piecewise linear approximation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Soft computing |
hierarchy_parent_id |
231970536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Soft computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 |
title |
Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
ctrlnum |
(DE-627)OLC2034900359 (DE-He213)s00500-019-03800-2-p |
title_full |
Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
author_sort |
Coroianu, Lucian |
journal |
Soft computing |
journalStr |
Soft computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
9491 |
author_browse |
Coroianu, Lucian Gagolewski, Marek Grzegorzewski, Przemyslaw |
container_volume |
23 |
class |
004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Coroianu, Lucian |
doi_str_mv |
10.1007/s00500-019-03800-2 |
normlink |
(ORCID)0000-0002-5191-4123 |
normlink_prefix_str_mv |
(orcid)0000-0002-5191-4123 |
dewey-full |
004 |
title_sort |
piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
title_auth |
Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
abstract |
Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot ($$n\ge 2$$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. © The Author(s) 2019 |
abstractGer |
Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot ($$n\ge 2$$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. © The Author(s) 2019 |
abstract_unstemmed |
Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot ($$n\ge 2$$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. © The Author(s) 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
19 |
title_short |
Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
url |
https://doi.org/10.1007/s00500-019-03800-2 |
remote_bool |
false |
author2 |
Gagolewski, Marek Grzegorzewski, Przemyslaw |
author2Str |
Gagolewski, Marek Grzegorzewski, Przemyslaw |
ppnlink |
231970536 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-019-03800-2 |
up_date |
2024-07-03T22:55:38.403Z |
_version_ |
1803600357931089920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034900359</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502111956.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-019-03800-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034900359</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-019-03800-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coroianu, Lucian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot ($$n\ge 2$$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation of fuzzy numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculations on fuzzy numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characteristics of fuzzy numbers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piecewise linear approximation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gagolewski, Marek</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grzegorzewski, Przemyslaw</subfield><subfield code="0">(orcid)0000-0002-5191-4123</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">23(2019), 19 vom: 14. Feb., Seite 9491-9505</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:19</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:9491-9505</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-019-03800-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2019</subfield><subfield code="e">19</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield><subfield code="h">9491-9505</subfield></datafield></record></collection>
|
score |
7.4018335 |