Fuzzy applications of Best–Worst method in manufacturing environment
Abstract High-strength steel alloys, titanium, ceramics, composites are in the group of materials that are hard to machine. Conventional manufacturing techniques are not sufficient to machine these materials. For this reason, these materials are generally machined with non-conventional manufacturing...
Ausführliche Beschreibung
Autor*in: |
Sofuoğlu, Mehmet Alper [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft computing - Springer Berlin Heidelberg, 1997, 24(2019), 1 vom: 08. Nov., Seite 647-659 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2019 ; number:1 ; day:08 ; month:11 ; pages:647-659 |
Links: |
---|
DOI / URN: |
10.1007/s00500-019-04491-5 |
---|
Katalog-ID: |
OLC2034903188 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034903188 | ||
003 | DE-627 | ||
005 | 20230502112042.0 | ||
007 | tu | ||
008 | 200820s2019 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-019-04491-5 |2 doi | |
035 | |a (DE-627)OLC2034903188 | ||
035 | |a (DE-He213)s00500-019-04491-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Sofuoğlu, Mehmet Alper |e verfasserin |0 (orcid)0000-0003-4681-6390 |4 aut | |
245 | 1 | 0 | |a Fuzzy applications of Best–Worst method in manufacturing environment |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2019 | ||
520 | |a Abstract High-strength steel alloys, titanium, ceramics, composites are in the group of materials that are hard to machine. Conventional manufacturing techniques are not sufficient to machine these materials. For this reason, these materials are generally machined with non-conventional manufacturing methods. In this study, a fuzzy application of Best–Worst method and a novel hybrid decision-making model (Best–Worst decision-making approach with fuzzy TOPSIS) are proposed to solve different non-traditional machining method selection problems which were taken from the literature. Using these models, the Best–Worst method shortens the steps of solutions in the fuzzy environment compared to the AHP/ANP-based fuzzy solutions in the literature. The proposed models produce successful results. | ||
650 | 4 | |a Best–Worst method | |
650 | 4 | |a Fuzzy TOPSIS | |
650 | 4 | |a TOPSIS | |
650 | 4 | |a Non-traditional machining | |
650 | 4 | |a Fuzzy numbers | |
773 | 0 | 8 | |i Enthalten in |t Soft computing |d Springer Berlin Heidelberg, 1997 |g 24(2019), 1 vom: 08. Nov., Seite 647-659 |w (DE-627)231970536 |w (DE-600)1387526-7 |w (DE-576)060238259 |x 1432-7643 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2019 |g number:1 |g day:08 |g month:11 |g pages:647-659 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00500-019-04491-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 24 |j 2019 |e 1 |b 08 |c 11 |h 647-659 |
author_variant |
m a s ma mas |
---|---|
matchkey_str |
article:14327643:2019----::uzapiainobswrtehdnauat |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00500-019-04491-5 doi (DE-627)OLC2034903188 (DE-He213)s00500-019-04491-5-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Sofuoğlu, Mehmet Alper verfasserin (orcid)0000-0003-4681-6390 aut Fuzzy applications of Best–Worst method in manufacturing environment 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract High-strength steel alloys, titanium, ceramics, composites are in the group of materials that are hard to machine. Conventional manufacturing techniques are not sufficient to machine these materials. For this reason, these materials are generally machined with non-conventional manufacturing methods. In this study, a fuzzy application of Best–Worst method and a novel hybrid decision-making model (Best–Worst decision-making approach with fuzzy TOPSIS) are proposed to solve different non-traditional machining method selection problems which were taken from the literature. Using these models, the Best–Worst method shortens the steps of solutions in the fuzzy environment compared to the AHP/ANP-based fuzzy solutions in the literature. The proposed models produce successful results. Best–Worst method Fuzzy TOPSIS TOPSIS Non-traditional machining Fuzzy numbers Enthalten in Soft computing Springer Berlin Heidelberg, 1997 24(2019), 1 vom: 08. Nov., Seite 647-659 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:24 year:2019 number:1 day:08 month:11 pages:647-659 https://doi.org/10.1007/s00500-019-04491-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 24 2019 1 08 11 647-659 |
spelling |
10.1007/s00500-019-04491-5 doi (DE-627)OLC2034903188 (DE-He213)s00500-019-04491-5-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Sofuoğlu, Mehmet Alper verfasserin (orcid)0000-0003-4681-6390 aut Fuzzy applications of Best–Worst method in manufacturing environment 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract High-strength steel alloys, titanium, ceramics, composites are in the group of materials that are hard to machine. Conventional manufacturing techniques are not sufficient to machine these materials. For this reason, these materials are generally machined with non-conventional manufacturing methods. In this study, a fuzzy application of Best–Worst method and a novel hybrid decision-making model (Best–Worst decision-making approach with fuzzy TOPSIS) are proposed to solve different non-traditional machining method selection problems which were taken from the literature. Using these models, the Best–Worst method shortens the steps of solutions in the fuzzy environment compared to the AHP/ANP-based fuzzy solutions in the literature. The proposed models produce successful results. Best–Worst method Fuzzy TOPSIS TOPSIS Non-traditional machining Fuzzy numbers Enthalten in Soft computing Springer Berlin Heidelberg, 1997 24(2019), 1 vom: 08. Nov., Seite 647-659 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:24 year:2019 number:1 day:08 month:11 pages:647-659 https://doi.org/10.1007/s00500-019-04491-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 24 2019 1 08 11 647-659 |
allfields_unstemmed |
10.1007/s00500-019-04491-5 doi (DE-627)OLC2034903188 (DE-He213)s00500-019-04491-5-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Sofuoğlu, Mehmet Alper verfasserin (orcid)0000-0003-4681-6390 aut Fuzzy applications of Best–Worst method in manufacturing environment 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract High-strength steel alloys, titanium, ceramics, composites are in the group of materials that are hard to machine. Conventional manufacturing techniques are not sufficient to machine these materials. For this reason, these materials are generally machined with non-conventional manufacturing methods. In this study, a fuzzy application of Best–Worst method and a novel hybrid decision-making model (Best–Worst decision-making approach with fuzzy TOPSIS) are proposed to solve different non-traditional machining method selection problems which were taken from the literature. Using these models, the Best–Worst method shortens the steps of solutions in the fuzzy environment compared to the AHP/ANP-based fuzzy solutions in the literature. The proposed models produce successful results. Best–Worst method Fuzzy TOPSIS TOPSIS Non-traditional machining Fuzzy numbers Enthalten in Soft computing Springer Berlin Heidelberg, 1997 24(2019), 1 vom: 08. Nov., Seite 647-659 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:24 year:2019 number:1 day:08 month:11 pages:647-659 https://doi.org/10.1007/s00500-019-04491-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 24 2019 1 08 11 647-659 |
allfieldsGer |
10.1007/s00500-019-04491-5 doi (DE-627)OLC2034903188 (DE-He213)s00500-019-04491-5-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Sofuoğlu, Mehmet Alper verfasserin (orcid)0000-0003-4681-6390 aut Fuzzy applications of Best–Worst method in manufacturing environment 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract High-strength steel alloys, titanium, ceramics, composites are in the group of materials that are hard to machine. Conventional manufacturing techniques are not sufficient to machine these materials. For this reason, these materials are generally machined with non-conventional manufacturing methods. In this study, a fuzzy application of Best–Worst method and a novel hybrid decision-making model (Best–Worst decision-making approach with fuzzy TOPSIS) are proposed to solve different non-traditional machining method selection problems which were taken from the literature. Using these models, the Best–Worst method shortens the steps of solutions in the fuzzy environment compared to the AHP/ANP-based fuzzy solutions in the literature. The proposed models produce successful results. Best–Worst method Fuzzy TOPSIS TOPSIS Non-traditional machining Fuzzy numbers Enthalten in Soft computing Springer Berlin Heidelberg, 1997 24(2019), 1 vom: 08. Nov., Seite 647-659 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:24 year:2019 number:1 day:08 month:11 pages:647-659 https://doi.org/10.1007/s00500-019-04491-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 24 2019 1 08 11 647-659 |
allfieldsSound |
10.1007/s00500-019-04491-5 doi (DE-627)OLC2034903188 (DE-He213)s00500-019-04491-5-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Sofuoğlu, Mehmet Alper verfasserin (orcid)0000-0003-4681-6390 aut Fuzzy applications of Best–Worst method in manufacturing environment 2019 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract High-strength steel alloys, titanium, ceramics, composites are in the group of materials that are hard to machine. Conventional manufacturing techniques are not sufficient to machine these materials. For this reason, these materials are generally machined with non-conventional manufacturing methods. In this study, a fuzzy application of Best–Worst method and a novel hybrid decision-making model (Best–Worst decision-making approach with fuzzy TOPSIS) are proposed to solve different non-traditional machining method selection problems which were taken from the literature. Using these models, the Best–Worst method shortens the steps of solutions in the fuzzy environment compared to the AHP/ANP-based fuzzy solutions in the literature. The proposed models produce successful results. Best–Worst method Fuzzy TOPSIS TOPSIS Non-traditional machining Fuzzy numbers Enthalten in Soft computing Springer Berlin Heidelberg, 1997 24(2019), 1 vom: 08. Nov., Seite 647-659 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:24 year:2019 number:1 day:08 month:11 pages:647-659 https://doi.org/10.1007/s00500-019-04491-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 24 2019 1 08 11 647-659 |
language |
English |
source |
Enthalten in Soft computing 24(2019), 1 vom: 08. Nov., Seite 647-659 volume:24 year:2019 number:1 day:08 month:11 pages:647-659 |
sourceStr |
Enthalten in Soft computing 24(2019), 1 vom: 08. Nov., Seite 647-659 volume:24 year:2019 number:1 day:08 month:11 pages:647-659 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Best–Worst method Fuzzy TOPSIS TOPSIS Non-traditional machining Fuzzy numbers |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Soft computing |
authorswithroles_txt_mv |
Sofuoğlu, Mehmet Alper @@aut@@ |
publishDateDaySort_date |
2019-11-08T00:00:00Z |
hierarchy_top_id |
231970536 |
dewey-sort |
14 |
id |
OLC2034903188 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034903188</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502112042.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-019-04491-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034903188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-019-04491-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sofuoğlu, Mehmet Alper</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4681-6390</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fuzzy applications of Best–Worst method in manufacturing environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract High-strength steel alloys, titanium, ceramics, composites are in the group of materials that are hard to machine. Conventional manufacturing techniques are not sufficient to machine these materials. For this reason, these materials are generally machined with non-conventional manufacturing methods. In this study, a fuzzy application of Best–Worst method and a novel hybrid decision-making model (Best–Worst decision-making approach with fuzzy TOPSIS) are proposed to solve different non-traditional machining method selection problems which were taken from the literature. Using these models, the Best–Worst method shortens the steps of solutions in the fuzzy environment compared to the AHP/ANP-based fuzzy solutions in the literature. The proposed models produce successful results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Best–Worst method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy TOPSIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TOPSIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-traditional machining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy numbers</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">24(2019), 1 vom: 08. Nov., Seite 647-659</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:647-659</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-019-04491-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">11</subfield><subfield code="h">647-659</subfield></datafield></record></collection>
|
author |
Sofuoğlu, Mehmet Alper |
spellingShingle |
Sofuoğlu, Mehmet Alper ddc 004 ssgn 11 misc Best–Worst method misc Fuzzy TOPSIS misc TOPSIS misc Non-traditional machining misc Fuzzy numbers Fuzzy applications of Best–Worst method in manufacturing environment |
authorStr |
Sofuoğlu, Mehmet Alper |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)231970536 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1432-7643 |
topic_title |
004 VZ 11 ssgn Fuzzy applications of Best–Worst method in manufacturing environment Best–Worst method Fuzzy TOPSIS TOPSIS Non-traditional machining Fuzzy numbers |
topic |
ddc 004 ssgn 11 misc Best–Worst method misc Fuzzy TOPSIS misc TOPSIS misc Non-traditional machining misc Fuzzy numbers |
topic_unstemmed |
ddc 004 ssgn 11 misc Best–Worst method misc Fuzzy TOPSIS misc TOPSIS misc Non-traditional machining misc Fuzzy numbers |
topic_browse |
ddc 004 ssgn 11 misc Best–Worst method misc Fuzzy TOPSIS misc TOPSIS misc Non-traditional machining misc Fuzzy numbers |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Soft computing |
hierarchy_parent_id |
231970536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Soft computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 |
title |
Fuzzy applications of Best–Worst method in manufacturing environment |
ctrlnum |
(DE-627)OLC2034903188 (DE-He213)s00500-019-04491-5-p |
title_full |
Fuzzy applications of Best–Worst method in manufacturing environment |
author_sort |
Sofuoğlu, Mehmet Alper |
journal |
Soft computing |
journalStr |
Soft computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
647 |
author_browse |
Sofuoğlu, Mehmet Alper |
container_volume |
24 |
class |
004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Sofuoğlu, Mehmet Alper |
doi_str_mv |
10.1007/s00500-019-04491-5 |
normlink |
(ORCID)0000-0003-4681-6390 |
normlink_prefix_str_mv |
(orcid)0000-0003-4681-6390 |
dewey-full |
004 |
title_sort |
fuzzy applications of best–worst method in manufacturing environment |
title_auth |
Fuzzy applications of Best–Worst method in manufacturing environment |
abstract |
Abstract High-strength steel alloys, titanium, ceramics, composites are in the group of materials that are hard to machine. Conventional manufacturing techniques are not sufficient to machine these materials. For this reason, these materials are generally machined with non-conventional manufacturing methods. In this study, a fuzzy application of Best–Worst method and a novel hybrid decision-making model (Best–Worst decision-making approach with fuzzy TOPSIS) are proposed to solve different non-traditional machining method selection problems which were taken from the literature. Using these models, the Best–Worst method shortens the steps of solutions in the fuzzy environment compared to the AHP/ANP-based fuzzy solutions in the literature. The proposed models produce successful results. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstractGer |
Abstract High-strength steel alloys, titanium, ceramics, composites are in the group of materials that are hard to machine. Conventional manufacturing techniques are not sufficient to machine these materials. For this reason, these materials are generally machined with non-conventional manufacturing methods. In this study, a fuzzy application of Best–Worst method and a novel hybrid decision-making model (Best–Worst decision-making approach with fuzzy TOPSIS) are proposed to solve different non-traditional machining method selection problems which were taken from the literature. Using these models, the Best–Worst method shortens the steps of solutions in the fuzzy environment compared to the AHP/ANP-based fuzzy solutions in the literature. The proposed models produce successful results. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
abstract_unstemmed |
Abstract High-strength steel alloys, titanium, ceramics, composites are in the group of materials that are hard to machine. Conventional manufacturing techniques are not sufficient to machine these materials. For this reason, these materials are generally machined with non-conventional manufacturing methods. In this study, a fuzzy application of Best–Worst method and a novel hybrid decision-making model (Best–Worst decision-making approach with fuzzy TOPSIS) are proposed to solve different non-traditional machining method selection problems which were taken from the literature. Using these models, the Best–Worst method shortens the steps of solutions in the fuzzy environment compared to the AHP/ANP-based fuzzy solutions in the literature. The proposed models produce successful results. © Springer-Verlag GmbH Germany, part of Springer Nature 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
1 |
title_short |
Fuzzy applications of Best–Worst method in manufacturing environment |
url |
https://doi.org/10.1007/s00500-019-04491-5 |
remote_bool |
false |
ppnlink |
231970536 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-019-04491-5 |
up_date |
2024-07-03T22:56:25.040Z |
_version_ |
1803600406816751616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034903188</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502112042.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2019 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-019-04491-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034903188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-019-04491-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sofuoğlu, Mehmet Alper</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4681-6390</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fuzzy applications of Best–Worst method in manufacturing environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract High-strength steel alloys, titanium, ceramics, composites are in the group of materials that are hard to machine. Conventional manufacturing techniques are not sufficient to machine these materials. For this reason, these materials are generally machined with non-conventional manufacturing methods. In this study, a fuzzy application of Best–Worst method and a novel hybrid decision-making model (Best–Worst decision-making approach with fuzzy TOPSIS) are proposed to solve different non-traditional machining method selection problems which were taken from the literature. Using these models, the Best–Worst method shortens the steps of solutions in the fuzzy environment compared to the AHP/ANP-based fuzzy solutions in the literature. The proposed models produce successful results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Best–Worst method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy TOPSIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TOPSIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-traditional machining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy numbers</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">24(2019), 1 vom: 08. Nov., Seite 647-659</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:647-659</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-019-04491-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">11</subfield><subfield code="h">647-659</subfield></datafield></record></collection>
|
score |
7.4009285 |