Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks
Abstract Wireless sensors are those devices which sense any physical quantity. Group of sensor node working together can be termed as a wireless sensor network (WSN). The lifetime of WSN is critical and is based greatly on energy consumption for data transmission. By using the available energy effic...
Ausführliche Beschreibung
Autor*in: |
Kiran, W. S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft computing - Springer Berlin Heidelberg, 1997, 24(2020), 15 vom: 06. Apr., Seite 11805-11818 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2020 ; number:15 ; day:06 ; month:04 ; pages:11805-11818 |
Links: |
---|
DOI / URN: |
10.1007/s00500-020-04900-0 |
---|
Katalog-ID: |
OLC2034910273 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034910273 | ||
003 | DE-627 | ||
005 | 20230504154934.0 | ||
007 | tu | ||
008 | 200819s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-020-04900-0 |2 doi | |
035 | |a (DE-627)OLC2034910273 | ||
035 | |a (DE-He213)s00500-020-04900-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Kiran, W. S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany, part of Springer Nature 2020 | ||
520 | |a Abstract Wireless sensors are those devices which sense any physical quantity. Group of sensor node working together can be termed as a wireless sensor network (WSN). The lifetime of WSN is critical and is based greatly on energy consumption for data transmission. By using the available energy efficiently, the nodes can operate for a longer time thereby increasing the network lifetime. In this paper, fuzzy-based clustering is used for clustering, which selects an optimal cluster head (CH). Fuzzy clustering is made with the help of residual energy and distance as fuzzy descriptors. However, when the network is heterogeneous, fuzzy-based clustering is found in efficient in many cases. To improve efficiency, a multidirectional routing is proposed along with fuzzy clustering. Using multidirectional routing, possible multiple paths between node and BS will be found out and the path with least hop will be selected as a routing path. The simulation results have been compared with traditional low energy adaptive clustering hierarchy, and a significant improvement in the lifetime of a node has been observed. | ||
650 | 4 | |a Clustering | |
650 | 4 | |a Fuzzy logic | |
650 | 4 | |a Cluster head (CH) | |
650 | 4 | |a Multidirectional routing | |
650 | 4 | |a LEACH | |
700 | 1 | |a Smys, S. |4 aut | |
700 | 1 | |a Bindhu, V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft computing |d Springer Berlin Heidelberg, 1997 |g 24(2020), 15 vom: 06. Apr., Seite 11805-11818 |w (DE-627)231970536 |w (DE-600)1387526-7 |w (DE-576)060238259 |x 1432-7643 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2020 |g number:15 |g day:06 |g month:04 |g pages:11805-11818 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00500-020-04900-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 24 |j 2020 |e 15 |b 06 |c 04 |h 11805-11818 |
author_variant |
w s k ws wsk s s ss v b vb |
---|---|
matchkey_str |
article:14327643:2020----::nacmnontokieiesnfzylseignmliietoarui |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s00500-020-04900-0 doi (DE-627)OLC2034910273 (DE-He213)s00500-020-04900-0-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Kiran, W. S. verfasserin aut Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Wireless sensors are those devices which sense any physical quantity. Group of sensor node working together can be termed as a wireless sensor network (WSN). The lifetime of WSN is critical and is based greatly on energy consumption for data transmission. By using the available energy efficiently, the nodes can operate for a longer time thereby increasing the network lifetime. In this paper, fuzzy-based clustering is used for clustering, which selects an optimal cluster head (CH). Fuzzy clustering is made with the help of residual energy and distance as fuzzy descriptors. However, when the network is heterogeneous, fuzzy-based clustering is found in efficient in many cases. To improve efficiency, a multidirectional routing is proposed along with fuzzy clustering. Using multidirectional routing, possible multiple paths between node and BS will be found out and the path with least hop will be selected as a routing path. The simulation results have been compared with traditional low energy adaptive clustering hierarchy, and a significant improvement in the lifetime of a node has been observed. Clustering Fuzzy logic Cluster head (CH) Multidirectional routing LEACH Smys, S. aut Bindhu, V. aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 24(2020), 15 vom: 06. Apr., Seite 11805-11818 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:24 year:2020 number:15 day:06 month:04 pages:11805-11818 https://doi.org/10.1007/s00500-020-04900-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 24 2020 15 06 04 11805-11818 |
spelling |
10.1007/s00500-020-04900-0 doi (DE-627)OLC2034910273 (DE-He213)s00500-020-04900-0-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Kiran, W. S. verfasserin aut Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Wireless sensors are those devices which sense any physical quantity. Group of sensor node working together can be termed as a wireless sensor network (WSN). The lifetime of WSN is critical and is based greatly on energy consumption for data transmission. By using the available energy efficiently, the nodes can operate for a longer time thereby increasing the network lifetime. In this paper, fuzzy-based clustering is used for clustering, which selects an optimal cluster head (CH). Fuzzy clustering is made with the help of residual energy and distance as fuzzy descriptors. However, when the network is heterogeneous, fuzzy-based clustering is found in efficient in many cases. To improve efficiency, a multidirectional routing is proposed along with fuzzy clustering. Using multidirectional routing, possible multiple paths between node and BS will be found out and the path with least hop will be selected as a routing path. The simulation results have been compared with traditional low energy adaptive clustering hierarchy, and a significant improvement in the lifetime of a node has been observed. Clustering Fuzzy logic Cluster head (CH) Multidirectional routing LEACH Smys, S. aut Bindhu, V. aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 24(2020), 15 vom: 06. Apr., Seite 11805-11818 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:24 year:2020 number:15 day:06 month:04 pages:11805-11818 https://doi.org/10.1007/s00500-020-04900-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 24 2020 15 06 04 11805-11818 |
allfields_unstemmed |
10.1007/s00500-020-04900-0 doi (DE-627)OLC2034910273 (DE-He213)s00500-020-04900-0-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Kiran, W. S. verfasserin aut Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Wireless sensors are those devices which sense any physical quantity. Group of sensor node working together can be termed as a wireless sensor network (WSN). The lifetime of WSN is critical and is based greatly on energy consumption for data transmission. By using the available energy efficiently, the nodes can operate for a longer time thereby increasing the network lifetime. In this paper, fuzzy-based clustering is used for clustering, which selects an optimal cluster head (CH). Fuzzy clustering is made with the help of residual energy and distance as fuzzy descriptors. However, when the network is heterogeneous, fuzzy-based clustering is found in efficient in many cases. To improve efficiency, a multidirectional routing is proposed along with fuzzy clustering. Using multidirectional routing, possible multiple paths between node and BS will be found out and the path with least hop will be selected as a routing path. The simulation results have been compared with traditional low energy adaptive clustering hierarchy, and a significant improvement in the lifetime of a node has been observed. Clustering Fuzzy logic Cluster head (CH) Multidirectional routing LEACH Smys, S. aut Bindhu, V. aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 24(2020), 15 vom: 06. Apr., Seite 11805-11818 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:24 year:2020 number:15 day:06 month:04 pages:11805-11818 https://doi.org/10.1007/s00500-020-04900-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 24 2020 15 06 04 11805-11818 |
allfieldsGer |
10.1007/s00500-020-04900-0 doi (DE-627)OLC2034910273 (DE-He213)s00500-020-04900-0-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Kiran, W. S. verfasserin aut Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Wireless sensors are those devices which sense any physical quantity. Group of sensor node working together can be termed as a wireless sensor network (WSN). The lifetime of WSN is critical and is based greatly on energy consumption for data transmission. By using the available energy efficiently, the nodes can operate for a longer time thereby increasing the network lifetime. In this paper, fuzzy-based clustering is used for clustering, which selects an optimal cluster head (CH). Fuzzy clustering is made with the help of residual energy and distance as fuzzy descriptors. However, when the network is heterogeneous, fuzzy-based clustering is found in efficient in many cases. To improve efficiency, a multidirectional routing is proposed along with fuzzy clustering. Using multidirectional routing, possible multiple paths between node and BS will be found out and the path with least hop will be selected as a routing path. The simulation results have been compared with traditional low energy adaptive clustering hierarchy, and a significant improvement in the lifetime of a node has been observed. Clustering Fuzzy logic Cluster head (CH) Multidirectional routing LEACH Smys, S. aut Bindhu, V. aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 24(2020), 15 vom: 06. Apr., Seite 11805-11818 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:24 year:2020 number:15 day:06 month:04 pages:11805-11818 https://doi.org/10.1007/s00500-020-04900-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 24 2020 15 06 04 11805-11818 |
allfieldsSound |
10.1007/s00500-020-04900-0 doi (DE-627)OLC2034910273 (DE-He213)s00500-020-04900-0-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Kiran, W. S. verfasserin aut Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Wireless sensors are those devices which sense any physical quantity. Group of sensor node working together can be termed as a wireless sensor network (WSN). The lifetime of WSN is critical and is based greatly on energy consumption for data transmission. By using the available energy efficiently, the nodes can operate for a longer time thereby increasing the network lifetime. In this paper, fuzzy-based clustering is used for clustering, which selects an optimal cluster head (CH). Fuzzy clustering is made with the help of residual energy and distance as fuzzy descriptors. However, when the network is heterogeneous, fuzzy-based clustering is found in efficient in many cases. To improve efficiency, a multidirectional routing is proposed along with fuzzy clustering. Using multidirectional routing, possible multiple paths between node and BS will be found out and the path with least hop will be selected as a routing path. The simulation results have been compared with traditional low energy adaptive clustering hierarchy, and a significant improvement in the lifetime of a node has been observed. Clustering Fuzzy logic Cluster head (CH) Multidirectional routing LEACH Smys, S. aut Bindhu, V. aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 24(2020), 15 vom: 06. Apr., Seite 11805-11818 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:24 year:2020 number:15 day:06 month:04 pages:11805-11818 https://doi.org/10.1007/s00500-020-04900-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 24 2020 15 06 04 11805-11818 |
language |
English |
source |
Enthalten in Soft computing 24(2020), 15 vom: 06. Apr., Seite 11805-11818 volume:24 year:2020 number:15 day:06 month:04 pages:11805-11818 |
sourceStr |
Enthalten in Soft computing 24(2020), 15 vom: 06. Apr., Seite 11805-11818 volume:24 year:2020 number:15 day:06 month:04 pages:11805-11818 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Clustering Fuzzy logic Cluster head (CH) Multidirectional routing LEACH |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Soft computing |
authorswithroles_txt_mv |
Kiran, W. S. @@aut@@ Smys, S. @@aut@@ Bindhu, V. @@aut@@ |
publishDateDaySort_date |
2020-04-06T00:00:00Z |
hierarchy_top_id |
231970536 |
dewey-sort |
14 |
id |
OLC2034910273 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034910273</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504154934.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-020-04900-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034910273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-020-04900-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kiran, W. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Wireless sensors are those devices which sense any physical quantity. Group of sensor node working together can be termed as a wireless sensor network (WSN). The lifetime of WSN is critical and is based greatly on energy consumption for data transmission. By using the available energy efficiently, the nodes can operate for a longer time thereby increasing the network lifetime. In this paper, fuzzy-based clustering is used for clustering, which selects an optimal cluster head (CH). Fuzzy clustering is made with the help of residual energy and distance as fuzzy descriptors. However, when the network is heterogeneous, fuzzy-based clustering is found in efficient in many cases. To improve efficiency, a multidirectional routing is proposed along with fuzzy clustering. Using multidirectional routing, possible multiple paths between node and BS will be found out and the path with least hop will be selected as a routing path. The simulation results have been compared with traditional low energy adaptive clustering hierarchy, and a significant improvement in the lifetime of a node has been observed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster head (CH)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multidirectional routing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LEACH</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smys, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bindhu, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">24(2020), 15 vom: 06. Apr., Seite 11805-11818</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:15</subfield><subfield code="g">day:06</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:11805-11818</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-020-04900-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2020</subfield><subfield code="e">15</subfield><subfield code="b">06</subfield><subfield code="c">04</subfield><subfield code="h">11805-11818</subfield></datafield></record></collection>
|
author |
Kiran, W. S. |
spellingShingle |
Kiran, W. S. ddc 004 ssgn 11 misc Clustering misc Fuzzy logic misc Cluster head (CH) misc Multidirectional routing misc LEACH Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks |
authorStr |
Kiran, W. S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)231970536 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1432-7643 |
topic_title |
004 VZ 11 ssgn Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks Clustering Fuzzy logic Cluster head (CH) Multidirectional routing LEACH |
topic |
ddc 004 ssgn 11 misc Clustering misc Fuzzy logic misc Cluster head (CH) misc Multidirectional routing misc LEACH |
topic_unstemmed |
ddc 004 ssgn 11 misc Clustering misc Fuzzy logic misc Cluster head (CH) misc Multidirectional routing misc LEACH |
topic_browse |
ddc 004 ssgn 11 misc Clustering misc Fuzzy logic misc Cluster head (CH) misc Multidirectional routing misc LEACH |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Soft computing |
hierarchy_parent_id |
231970536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Soft computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 |
title |
Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks |
ctrlnum |
(DE-627)OLC2034910273 (DE-He213)s00500-020-04900-0-p |
title_full |
Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks |
author_sort |
Kiran, W. S. |
journal |
Soft computing |
journalStr |
Soft computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
11805 |
author_browse |
Kiran, W. S. Smys, S. Bindhu, V. |
container_volume |
24 |
class |
004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Kiran, W. S. |
doi_str_mv |
10.1007/s00500-020-04900-0 |
dewey-full |
004 |
title_sort |
enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks |
title_auth |
Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks |
abstract |
Abstract Wireless sensors are those devices which sense any physical quantity. Group of sensor node working together can be termed as a wireless sensor network (WSN). The lifetime of WSN is critical and is based greatly on energy consumption for data transmission. By using the available energy efficiently, the nodes can operate for a longer time thereby increasing the network lifetime. In this paper, fuzzy-based clustering is used for clustering, which selects an optimal cluster head (CH). Fuzzy clustering is made with the help of residual energy and distance as fuzzy descriptors. However, when the network is heterogeneous, fuzzy-based clustering is found in efficient in many cases. To improve efficiency, a multidirectional routing is proposed along with fuzzy clustering. Using multidirectional routing, possible multiple paths between node and BS will be found out and the path with least hop will be selected as a routing path. The simulation results have been compared with traditional low energy adaptive clustering hierarchy, and a significant improvement in the lifetime of a node has been observed. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
abstractGer |
Abstract Wireless sensors are those devices which sense any physical quantity. Group of sensor node working together can be termed as a wireless sensor network (WSN). The lifetime of WSN is critical and is based greatly on energy consumption for data transmission. By using the available energy efficiently, the nodes can operate for a longer time thereby increasing the network lifetime. In this paper, fuzzy-based clustering is used for clustering, which selects an optimal cluster head (CH). Fuzzy clustering is made with the help of residual energy and distance as fuzzy descriptors. However, when the network is heterogeneous, fuzzy-based clustering is found in efficient in many cases. To improve efficiency, a multidirectional routing is proposed along with fuzzy clustering. Using multidirectional routing, possible multiple paths between node and BS will be found out and the path with least hop will be selected as a routing path. The simulation results have been compared with traditional low energy adaptive clustering hierarchy, and a significant improvement in the lifetime of a node has been observed. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract Wireless sensors are those devices which sense any physical quantity. Group of sensor node working together can be termed as a wireless sensor network (WSN). The lifetime of WSN is critical and is based greatly on energy consumption for data transmission. By using the available energy efficiently, the nodes can operate for a longer time thereby increasing the network lifetime. In this paper, fuzzy-based clustering is used for clustering, which selects an optimal cluster head (CH). Fuzzy clustering is made with the help of residual energy and distance as fuzzy descriptors. However, when the network is heterogeneous, fuzzy-based clustering is found in efficient in many cases. To improve efficiency, a multidirectional routing is proposed along with fuzzy clustering. Using multidirectional routing, possible multiple paths between node and BS will be found out and the path with least hop will be selected as a routing path. The simulation results have been compared with traditional low energy adaptive clustering hierarchy, and a significant improvement in the lifetime of a node has been observed. © Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
15 |
title_short |
Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks |
url |
https://doi.org/10.1007/s00500-020-04900-0 |
remote_bool |
false |
author2 |
Smys, S. Bindhu, V. |
author2Str |
Smys, S. Bindhu, V. |
ppnlink |
231970536 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-020-04900-0 |
up_date |
2024-07-03T22:58:22.878Z |
_version_ |
1803600530378850304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034910273</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504154934.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-020-04900-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034910273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-020-04900-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kiran, W. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancement of network lifetime using fuzzy clustering and multidirectional routing for wireless sensor networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Wireless sensors are those devices which sense any physical quantity. Group of sensor node working together can be termed as a wireless sensor network (WSN). The lifetime of WSN is critical and is based greatly on energy consumption for data transmission. By using the available energy efficiently, the nodes can operate for a longer time thereby increasing the network lifetime. In this paper, fuzzy-based clustering is used for clustering, which selects an optimal cluster head (CH). Fuzzy clustering is made with the help of residual energy and distance as fuzzy descriptors. However, when the network is heterogeneous, fuzzy-based clustering is found in efficient in many cases. To improve efficiency, a multidirectional routing is proposed along with fuzzy clustering. Using multidirectional routing, possible multiple paths between node and BS will be found out and the path with least hop will be selected as a routing path. The simulation results have been compared with traditional low energy adaptive clustering hierarchy, and a significant improvement in the lifetime of a node has been observed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster head (CH)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multidirectional routing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LEACH</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smys, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bindhu, V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">24(2020), 15 vom: 06. Apr., Seite 11805-11818</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:15</subfield><subfield code="g">day:06</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:11805-11818</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-020-04900-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2020</subfield><subfield code="e">15</subfield><subfield code="b">06</subfield><subfield code="c">04</subfield><subfield code="h">11805-11818</subfield></datafield></record></collection>
|
score |
7.399419 |