Leak detection methods for glass capped and polymer sealed MEMS packaging
Abstract This paper presents the limitations of the helium leak test when applied to typical MEMS packages. A novel closed-form expression is presented which allows the determination of the minimum cavity volume package that can be accurately tested using the helium leak test method in conjunction w...
Ausführliche Beschreibung
Autor*in: |
Millar, Suzanne [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Microsystem technologies - Springer-Verlag, 1994, 17(2011), 4 vom: 05. Feb., Seite 677-684 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2011 ; number:4 ; day:05 ; month:02 ; pages:677-684 |
Links: |
---|
DOI / URN: |
10.1007/s00542-010-1200-z |
---|
Katalog-ID: |
OLC2034930150 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034930150 | ||
003 | DE-627 | ||
005 | 20230502121341.0 | ||
007 | tu | ||
008 | 200820s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00542-010-1200-z |2 doi | |
035 | |a (DE-627)OLC2034930150 | ||
035 | |a (DE-He213)s00542-010-1200-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Millar, Suzanne |e verfasserin |4 aut | |
245 | 1 | 0 | |a Leak detection methods for glass capped and polymer sealed MEMS packaging |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag 2011 | ||
520 | |a Abstract This paper presents the limitations of the helium leak test when applied to typical MEMS packages. A novel closed-form expression is presented which allows the determination of the minimum cavity volume package that can be accurately tested using the helium leak test method in conjunction with a standard gross leak test. This expression can be used to find optimum test parameters for packages with cavity volumes greater than 2.6 × $ 10^{−3} $ $ cm^{3} $. Hermeticity testing using FTIR and Raman spectroscopy are considered as potential methods to overcome the limitations of the helium leak test method. | ||
650 | 4 | |a Dwell Time | |
650 | 4 | |a Leak Rate | |
650 | 4 | |a Cavity Volume | |
650 | 4 | |a Leak Test | |
650 | 4 | |a Leak Channel | |
700 | 1 | |a Desmulliez, Marc P. Y. |4 aut | |
700 | 1 | |a McCracken, Stewart |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Microsystem technologies |d Springer-Verlag, 1994 |g 17(2011), 4 vom: 05. Feb., Seite 677-684 |w (DE-627)182644278 |w (DE-600)1223008-X |w (DE-576)045302146 |x 0946-7076 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2011 |g number:4 |g day:05 |g month:02 |g pages:677-684 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00542-010-1200-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4335 | ||
951 | |a AR | ||
952 | |d 17 |j 2011 |e 4 |b 05 |c 02 |h 677-684 |
author_variant |
s m sm m p y d mpy mpyd s m sm |
---|---|
matchkey_str |
article:09467076:2011----::ekeetomtosogasapdnplmr |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s00542-010-1200-z doi (DE-627)OLC2034930150 (DE-He213)s00542-010-1200-z-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Millar, Suzanne verfasserin aut Leak detection methods for glass capped and polymer sealed MEMS packaging 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract This paper presents the limitations of the helium leak test when applied to typical MEMS packages. A novel closed-form expression is presented which allows the determination of the minimum cavity volume package that can be accurately tested using the helium leak test method in conjunction with a standard gross leak test. This expression can be used to find optimum test parameters for packages with cavity volumes greater than 2.6 × $ 10^{−3} $ $ cm^{3} $. Hermeticity testing using FTIR and Raman spectroscopy are considered as potential methods to overcome the limitations of the helium leak test method. Dwell Time Leak Rate Cavity Volume Leak Test Leak Channel Desmulliez, Marc P. Y. aut McCracken, Stewart aut Enthalten in Microsystem technologies Springer-Verlag, 1994 17(2011), 4 vom: 05. Feb., Seite 677-684 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:17 year:2011 number:4 day:05 month:02 pages:677-684 https://doi.org/10.1007/s00542-010-1200-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4335 AR 17 2011 4 05 02 677-684 |
spelling |
10.1007/s00542-010-1200-z doi (DE-627)OLC2034930150 (DE-He213)s00542-010-1200-z-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Millar, Suzanne verfasserin aut Leak detection methods for glass capped and polymer sealed MEMS packaging 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract This paper presents the limitations of the helium leak test when applied to typical MEMS packages. A novel closed-form expression is presented which allows the determination of the minimum cavity volume package that can be accurately tested using the helium leak test method in conjunction with a standard gross leak test. This expression can be used to find optimum test parameters for packages with cavity volumes greater than 2.6 × $ 10^{−3} $ $ cm^{3} $. Hermeticity testing using FTIR and Raman spectroscopy are considered as potential methods to overcome the limitations of the helium leak test method. Dwell Time Leak Rate Cavity Volume Leak Test Leak Channel Desmulliez, Marc P. Y. aut McCracken, Stewart aut Enthalten in Microsystem technologies Springer-Verlag, 1994 17(2011), 4 vom: 05. Feb., Seite 677-684 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:17 year:2011 number:4 day:05 month:02 pages:677-684 https://doi.org/10.1007/s00542-010-1200-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4335 AR 17 2011 4 05 02 677-684 |
allfields_unstemmed |
10.1007/s00542-010-1200-z doi (DE-627)OLC2034930150 (DE-He213)s00542-010-1200-z-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Millar, Suzanne verfasserin aut Leak detection methods for glass capped and polymer sealed MEMS packaging 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract This paper presents the limitations of the helium leak test when applied to typical MEMS packages. A novel closed-form expression is presented which allows the determination of the minimum cavity volume package that can be accurately tested using the helium leak test method in conjunction with a standard gross leak test. This expression can be used to find optimum test parameters for packages with cavity volumes greater than 2.6 × $ 10^{−3} $ $ cm^{3} $. Hermeticity testing using FTIR and Raman spectroscopy are considered as potential methods to overcome the limitations of the helium leak test method. Dwell Time Leak Rate Cavity Volume Leak Test Leak Channel Desmulliez, Marc P. Y. aut McCracken, Stewart aut Enthalten in Microsystem technologies Springer-Verlag, 1994 17(2011), 4 vom: 05. Feb., Seite 677-684 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:17 year:2011 number:4 day:05 month:02 pages:677-684 https://doi.org/10.1007/s00542-010-1200-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4335 AR 17 2011 4 05 02 677-684 |
allfieldsGer |
10.1007/s00542-010-1200-z doi (DE-627)OLC2034930150 (DE-He213)s00542-010-1200-z-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Millar, Suzanne verfasserin aut Leak detection methods for glass capped and polymer sealed MEMS packaging 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract This paper presents the limitations of the helium leak test when applied to typical MEMS packages. A novel closed-form expression is presented which allows the determination of the minimum cavity volume package that can be accurately tested using the helium leak test method in conjunction with a standard gross leak test. This expression can be used to find optimum test parameters for packages with cavity volumes greater than 2.6 × $ 10^{−3} $ $ cm^{3} $. Hermeticity testing using FTIR and Raman spectroscopy are considered as potential methods to overcome the limitations of the helium leak test method. Dwell Time Leak Rate Cavity Volume Leak Test Leak Channel Desmulliez, Marc P. Y. aut McCracken, Stewart aut Enthalten in Microsystem technologies Springer-Verlag, 1994 17(2011), 4 vom: 05. Feb., Seite 677-684 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:17 year:2011 number:4 day:05 month:02 pages:677-684 https://doi.org/10.1007/s00542-010-1200-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4335 AR 17 2011 4 05 02 677-684 |
allfieldsSound |
10.1007/s00542-010-1200-z doi (DE-627)OLC2034930150 (DE-He213)s00542-010-1200-z-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Millar, Suzanne verfasserin aut Leak detection methods for glass capped and polymer sealed MEMS packaging 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag 2011 Abstract This paper presents the limitations of the helium leak test when applied to typical MEMS packages. A novel closed-form expression is presented which allows the determination of the minimum cavity volume package that can be accurately tested using the helium leak test method in conjunction with a standard gross leak test. This expression can be used to find optimum test parameters for packages with cavity volumes greater than 2.6 × $ 10^{−3} $ $ cm^{3} $. Hermeticity testing using FTIR and Raman spectroscopy are considered as potential methods to overcome the limitations of the helium leak test method. Dwell Time Leak Rate Cavity Volume Leak Test Leak Channel Desmulliez, Marc P. Y. aut McCracken, Stewart aut Enthalten in Microsystem technologies Springer-Verlag, 1994 17(2011), 4 vom: 05. Feb., Seite 677-684 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:17 year:2011 number:4 day:05 month:02 pages:677-684 https://doi.org/10.1007/s00542-010-1200-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4335 AR 17 2011 4 05 02 677-684 |
language |
English |
source |
Enthalten in Microsystem technologies 17(2011), 4 vom: 05. Feb., Seite 677-684 volume:17 year:2011 number:4 day:05 month:02 pages:677-684 |
sourceStr |
Enthalten in Microsystem technologies 17(2011), 4 vom: 05. Feb., Seite 677-684 volume:17 year:2011 number:4 day:05 month:02 pages:677-684 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dwell Time Leak Rate Cavity Volume Leak Test Leak Channel |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Microsystem technologies |
authorswithroles_txt_mv |
Millar, Suzanne @@aut@@ Desmulliez, Marc P. Y. @@aut@@ McCracken, Stewart @@aut@@ |
publishDateDaySort_date |
2011-02-05T00:00:00Z |
hierarchy_top_id |
182644278 |
dewey-sort |
3620 |
id |
OLC2034930150 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034930150</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502121341.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00542-010-1200-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034930150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00542-010-1200-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Millar, Suzanne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Leak detection methods for glass capped and polymer sealed MEMS packaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents the limitations of the helium leak test when applied to typical MEMS packages. A novel closed-form expression is presented which allows the determination of the minimum cavity volume package that can be accurately tested using the helium leak test method in conjunction with a standard gross leak test. This expression can be used to find optimum test parameters for packages with cavity volumes greater than 2.6 × $ 10^{−3} $ $ cm^{3} $. Hermeticity testing using FTIR and Raman spectroscopy are considered as potential methods to overcome the limitations of the helium leak test method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dwell Time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leak Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cavity Volume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leak Test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leak Channel</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Desmulliez, Marc P. Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McCracken, Stewart</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microsystem technologies</subfield><subfield code="d">Springer-Verlag, 1994</subfield><subfield code="g">17(2011), 4 vom: 05. Feb., Seite 677-684</subfield><subfield code="w">(DE-627)182644278</subfield><subfield code="w">(DE-600)1223008-X</subfield><subfield code="w">(DE-576)045302146</subfield><subfield code="x">0946-7076</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:05</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:677-684</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00542-010-1200-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">05</subfield><subfield code="c">02</subfield><subfield code="h">677-684</subfield></datafield></record></collection>
|
author |
Millar, Suzanne |
spellingShingle |
Millar, Suzanne ddc 620 ddc 510 misc Dwell Time misc Leak Rate misc Cavity Volume misc Leak Test misc Leak Channel Leak detection methods for glass capped and polymer sealed MEMS packaging |
authorStr |
Millar, Suzanne |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182644278 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0946-7076 |
topic_title |
620 VZ 510 VZ Leak detection methods for glass capped and polymer sealed MEMS packaging Dwell Time Leak Rate Cavity Volume Leak Test Leak Channel |
topic |
ddc 620 ddc 510 misc Dwell Time misc Leak Rate misc Cavity Volume misc Leak Test misc Leak Channel |
topic_unstemmed |
ddc 620 ddc 510 misc Dwell Time misc Leak Rate misc Cavity Volume misc Leak Test misc Leak Channel |
topic_browse |
ddc 620 ddc 510 misc Dwell Time misc Leak Rate misc Cavity Volume misc Leak Test misc Leak Channel |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Microsystem technologies |
hierarchy_parent_id |
182644278 |
dewey-tens |
620 - Engineering 510 - Mathematics |
hierarchy_top_title |
Microsystem technologies |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 |
title |
Leak detection methods for glass capped and polymer sealed MEMS packaging |
ctrlnum |
(DE-627)OLC2034930150 (DE-He213)s00542-010-1200-z-p |
title_full |
Leak detection methods for glass capped and polymer sealed MEMS packaging |
author_sort |
Millar, Suzanne |
journal |
Microsystem technologies |
journalStr |
Microsystem technologies |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
677 |
author_browse |
Millar, Suzanne Desmulliez, Marc P. Y. McCracken, Stewart |
container_volume |
17 |
class |
620 VZ 510 VZ |
format_se |
Aufsätze |
author-letter |
Millar, Suzanne |
doi_str_mv |
10.1007/s00542-010-1200-z |
dewey-full |
620 510 |
title_sort |
leak detection methods for glass capped and polymer sealed mems packaging |
title_auth |
Leak detection methods for glass capped and polymer sealed MEMS packaging |
abstract |
Abstract This paper presents the limitations of the helium leak test when applied to typical MEMS packages. A novel closed-form expression is presented which allows the determination of the minimum cavity volume package that can be accurately tested using the helium leak test method in conjunction with a standard gross leak test. This expression can be used to find optimum test parameters for packages with cavity volumes greater than 2.6 × $ 10^{−3} $ $ cm^{3} $. Hermeticity testing using FTIR and Raman spectroscopy are considered as potential methods to overcome the limitations of the helium leak test method. © Springer-Verlag 2011 |
abstractGer |
Abstract This paper presents the limitations of the helium leak test when applied to typical MEMS packages. A novel closed-form expression is presented which allows the determination of the minimum cavity volume package that can be accurately tested using the helium leak test method in conjunction with a standard gross leak test. This expression can be used to find optimum test parameters for packages with cavity volumes greater than 2.6 × $ 10^{−3} $ $ cm^{3} $. Hermeticity testing using FTIR and Raman spectroscopy are considered as potential methods to overcome the limitations of the helium leak test method. © Springer-Verlag 2011 |
abstract_unstemmed |
Abstract This paper presents the limitations of the helium leak test when applied to typical MEMS packages. A novel closed-form expression is presented which allows the determination of the minimum cavity volume package that can be accurately tested using the helium leak test method in conjunction with a standard gross leak test. This expression can be used to find optimum test parameters for packages with cavity volumes greater than 2.6 × $ 10^{−3} $ $ cm^{3} $. Hermeticity testing using FTIR and Raman spectroscopy are considered as potential methods to overcome the limitations of the helium leak test method. © Springer-Verlag 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2048 GBV_ILN_4116 GBV_ILN_4277 GBV_ILN_4335 |
container_issue |
4 |
title_short |
Leak detection methods for glass capped and polymer sealed MEMS packaging |
url |
https://doi.org/10.1007/s00542-010-1200-z |
remote_bool |
false |
author2 |
Desmulliez, Marc P. Y. McCracken, Stewart |
author2Str |
Desmulliez, Marc P. Y. McCracken, Stewart |
ppnlink |
182644278 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00542-010-1200-z |
up_date |
2024-07-03T23:03:49.857Z |
_version_ |
1803600873241182208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034930150</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502121341.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00542-010-1200-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034930150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00542-010-1200-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Millar, Suzanne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Leak detection methods for glass capped and polymer sealed MEMS packaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents the limitations of the helium leak test when applied to typical MEMS packages. A novel closed-form expression is presented which allows the determination of the minimum cavity volume package that can be accurately tested using the helium leak test method in conjunction with a standard gross leak test. This expression can be used to find optimum test parameters for packages with cavity volumes greater than 2.6 × $ 10^{−3} $ $ cm^{3} $. Hermeticity testing using FTIR and Raman spectroscopy are considered as potential methods to overcome the limitations of the helium leak test method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dwell Time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leak Rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cavity Volume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leak Test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leak Channel</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Desmulliez, Marc P. Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McCracken, Stewart</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microsystem technologies</subfield><subfield code="d">Springer-Verlag, 1994</subfield><subfield code="g">17(2011), 4 vom: 05. Feb., Seite 677-684</subfield><subfield code="w">(DE-627)182644278</subfield><subfield code="w">(DE-600)1223008-X</subfield><subfield code="w">(DE-576)045302146</subfield><subfield code="x">0946-7076</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:4</subfield><subfield code="g">day:05</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:677-684</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00542-010-1200-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2011</subfield><subfield code="e">4</subfield><subfield code="b">05</subfield><subfield code="c">02</subfield><subfield code="h">677-684</subfield></datafield></record></collection>
|
score |
7.4018383 |