Phononic band engineering for thermal conduction control and similarity with photonic band engineering
Abstract There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports a...
Ausführliche Beschreibung
Autor*in: |
Nomura, Masahiro [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Microsystem technologies - Springer Berlin Heidelberg, 1994, 22(2015), 3 vom: 14. Mai, Seite 473-480 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2015 ; number:3 ; day:14 ; month:05 ; pages:473-480 |
Links: |
---|
DOI / URN: |
10.1007/s00542-015-2569-5 |
---|
Katalog-ID: |
OLC2034942701 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034942701 | ||
003 | DE-627 | ||
005 | 20230502121514.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00542-015-2569-5 |2 doi | |
035 | |a (DE-627)OLC2034942701 | ||
035 | |a (DE-He213)s00542-015-2569-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Nomura, Masahiro |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phononic band engineering for thermal conduction control and similarity with photonic band engineering |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2015 | ||
520 | |a Abstract There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports are discussed. The coherent manipulation of phonon transport by phononic crystal nanostructures is investigated. The possibility of thermal conduction nanoengineering with some simulation results in silicon at room temperature is discussed. The multiscale physics of thermal phonons makes coherent phonon transport control, i.e., heat transfer, more difficult. Clear reduction in a one-dimensional Si phonic crystal nanostructure compared with a nanowire of similar width is demonstrated. However, for clear demonstration of thermal conductivity control by phononic effect, low temperature measurements and/or smaller dimension will be required. | ||
650 | 4 | |a Phononic Crystal | |
650 | 4 | |a Mean Free Path | |
650 | 4 | |a Phononic Band | |
650 | 4 | |a Phonon Transport | |
650 | 4 | |a Thermal Phonon | |
773 | 0 | 8 | |i Enthalten in |t Microsystem technologies |d Springer Berlin Heidelberg, 1994 |g 22(2015), 3 vom: 14. Mai, Seite 473-480 |w (DE-627)182644278 |w (DE-600)1223008-X |w (DE-576)045302146 |x 0946-7076 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2015 |g number:3 |g day:14 |g month:05 |g pages:473-480 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00542-015-2569-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 22 |j 2015 |e 3 |b 14 |c 05 |h 473-480 |
author_variant |
m n mn |
---|---|
matchkey_str |
article:09467076:2015----::hnncadniernfrhracnutocnrlnsmlrtwt |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00542-015-2569-5 doi (DE-627)OLC2034942701 (DE-He213)s00542-015-2569-5-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Nomura, Masahiro verfasserin aut Phononic band engineering for thermal conduction control and similarity with photonic band engineering 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports are discussed. The coherent manipulation of phonon transport by phononic crystal nanostructures is investigated. The possibility of thermal conduction nanoengineering with some simulation results in silicon at room temperature is discussed. The multiscale physics of thermal phonons makes coherent phonon transport control, i.e., heat transfer, more difficult. Clear reduction in a one-dimensional Si phonic crystal nanostructure compared with a nanowire of similar width is demonstrated. However, for clear demonstration of thermal conductivity control by phononic effect, low temperature measurements and/or smaller dimension will be required. Phononic Crystal Mean Free Path Phononic Band Phonon Transport Thermal Phonon Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 22(2015), 3 vom: 14. Mai, Seite 473-480 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:22 year:2015 number:3 day:14 month:05 pages:473-480 https://doi.org/10.1007/s00542-015-2569-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_4277 AR 22 2015 3 14 05 473-480 |
spelling |
10.1007/s00542-015-2569-5 doi (DE-627)OLC2034942701 (DE-He213)s00542-015-2569-5-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Nomura, Masahiro verfasserin aut Phononic band engineering for thermal conduction control and similarity with photonic band engineering 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports are discussed. The coherent manipulation of phonon transport by phononic crystal nanostructures is investigated. The possibility of thermal conduction nanoengineering with some simulation results in silicon at room temperature is discussed. The multiscale physics of thermal phonons makes coherent phonon transport control, i.e., heat transfer, more difficult. Clear reduction in a one-dimensional Si phonic crystal nanostructure compared with a nanowire of similar width is demonstrated. However, for clear demonstration of thermal conductivity control by phononic effect, low temperature measurements and/or smaller dimension will be required. Phononic Crystal Mean Free Path Phononic Band Phonon Transport Thermal Phonon Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 22(2015), 3 vom: 14. Mai, Seite 473-480 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:22 year:2015 number:3 day:14 month:05 pages:473-480 https://doi.org/10.1007/s00542-015-2569-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_4277 AR 22 2015 3 14 05 473-480 |
allfields_unstemmed |
10.1007/s00542-015-2569-5 doi (DE-627)OLC2034942701 (DE-He213)s00542-015-2569-5-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Nomura, Masahiro verfasserin aut Phononic band engineering for thermal conduction control and similarity with photonic band engineering 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports are discussed. The coherent manipulation of phonon transport by phononic crystal nanostructures is investigated. The possibility of thermal conduction nanoengineering with some simulation results in silicon at room temperature is discussed. The multiscale physics of thermal phonons makes coherent phonon transport control, i.e., heat transfer, more difficult. Clear reduction in a one-dimensional Si phonic crystal nanostructure compared with a nanowire of similar width is demonstrated. However, for clear demonstration of thermal conductivity control by phononic effect, low temperature measurements and/or smaller dimension will be required. Phononic Crystal Mean Free Path Phononic Band Phonon Transport Thermal Phonon Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 22(2015), 3 vom: 14. Mai, Seite 473-480 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:22 year:2015 number:3 day:14 month:05 pages:473-480 https://doi.org/10.1007/s00542-015-2569-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_4277 AR 22 2015 3 14 05 473-480 |
allfieldsGer |
10.1007/s00542-015-2569-5 doi (DE-627)OLC2034942701 (DE-He213)s00542-015-2569-5-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Nomura, Masahiro verfasserin aut Phononic band engineering for thermal conduction control and similarity with photonic band engineering 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports are discussed. The coherent manipulation of phonon transport by phononic crystal nanostructures is investigated. The possibility of thermal conduction nanoengineering with some simulation results in silicon at room temperature is discussed. The multiscale physics of thermal phonons makes coherent phonon transport control, i.e., heat transfer, more difficult. Clear reduction in a one-dimensional Si phonic crystal nanostructure compared with a nanowire of similar width is demonstrated. However, for clear demonstration of thermal conductivity control by phononic effect, low temperature measurements and/or smaller dimension will be required. Phononic Crystal Mean Free Path Phononic Band Phonon Transport Thermal Phonon Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 22(2015), 3 vom: 14. Mai, Seite 473-480 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:22 year:2015 number:3 day:14 month:05 pages:473-480 https://doi.org/10.1007/s00542-015-2569-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_4277 AR 22 2015 3 14 05 473-480 |
allfieldsSound |
10.1007/s00542-015-2569-5 doi (DE-627)OLC2034942701 (DE-He213)s00542-015-2569-5-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Nomura, Masahiro verfasserin aut Phononic band engineering for thermal conduction control and similarity with photonic band engineering 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports are discussed. The coherent manipulation of phonon transport by phononic crystal nanostructures is investigated. The possibility of thermal conduction nanoengineering with some simulation results in silicon at room temperature is discussed. The multiscale physics of thermal phonons makes coherent phonon transport control, i.e., heat transfer, more difficult. Clear reduction in a one-dimensional Si phonic crystal nanostructure compared with a nanowire of similar width is demonstrated. However, for clear demonstration of thermal conductivity control by phononic effect, low temperature measurements and/or smaller dimension will be required. Phononic Crystal Mean Free Path Phononic Band Phonon Transport Thermal Phonon Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 22(2015), 3 vom: 14. Mai, Seite 473-480 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:22 year:2015 number:3 day:14 month:05 pages:473-480 https://doi.org/10.1007/s00542-015-2569-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_4277 AR 22 2015 3 14 05 473-480 |
language |
English |
source |
Enthalten in Microsystem technologies 22(2015), 3 vom: 14. Mai, Seite 473-480 volume:22 year:2015 number:3 day:14 month:05 pages:473-480 |
sourceStr |
Enthalten in Microsystem technologies 22(2015), 3 vom: 14. Mai, Seite 473-480 volume:22 year:2015 number:3 day:14 month:05 pages:473-480 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Phononic Crystal Mean Free Path Phononic Band Phonon Transport Thermal Phonon |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Microsystem technologies |
authorswithroles_txt_mv |
Nomura, Masahiro @@aut@@ |
publishDateDaySort_date |
2015-05-14T00:00:00Z |
hierarchy_top_id |
182644278 |
dewey-sort |
3620 |
id |
OLC2034942701 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034942701</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502121514.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00542-015-2569-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034942701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00542-015-2569-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nomura, Masahiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phononic band engineering for thermal conduction control and similarity with photonic band engineering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports are discussed. The coherent manipulation of phonon transport by phononic crystal nanostructures is investigated. The possibility of thermal conduction nanoengineering with some simulation results in silicon at room temperature is discussed. The multiscale physics of thermal phonons makes coherent phonon transport control, i.e., heat transfer, more difficult. Clear reduction in a one-dimensional Si phonic crystal nanostructure compared with a nanowire of similar width is demonstrated. However, for clear demonstration of thermal conductivity control by phononic effect, low temperature measurements and/or smaller dimension will be required.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phononic Crystal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mean Free Path</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phononic Band</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phonon Transport</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Phonon</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microsystem technologies</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">22(2015), 3 vom: 14. Mai, Seite 473-480</subfield><subfield code="w">(DE-627)182644278</subfield><subfield code="w">(DE-600)1223008-X</subfield><subfield code="w">(DE-576)045302146</subfield><subfield code="x">0946-7076</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:14</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:473-480</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00542-015-2569-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">14</subfield><subfield code="c">05</subfield><subfield code="h">473-480</subfield></datafield></record></collection>
|
author |
Nomura, Masahiro |
spellingShingle |
Nomura, Masahiro ddc 620 ddc 510 misc Phononic Crystal misc Mean Free Path misc Phononic Band misc Phonon Transport misc Thermal Phonon Phononic band engineering for thermal conduction control and similarity with photonic band engineering |
authorStr |
Nomura, Masahiro |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182644278 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0946-7076 |
topic_title |
620 VZ 510 VZ Phononic band engineering for thermal conduction control and similarity with photonic band engineering Phononic Crystal Mean Free Path Phononic Band Phonon Transport Thermal Phonon |
topic |
ddc 620 ddc 510 misc Phononic Crystal misc Mean Free Path misc Phononic Band misc Phonon Transport misc Thermal Phonon |
topic_unstemmed |
ddc 620 ddc 510 misc Phononic Crystal misc Mean Free Path misc Phononic Band misc Phonon Transport misc Thermal Phonon |
topic_browse |
ddc 620 ddc 510 misc Phononic Crystal misc Mean Free Path misc Phononic Band misc Phonon Transport misc Thermal Phonon |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Microsystem technologies |
hierarchy_parent_id |
182644278 |
dewey-tens |
620 - Engineering 510 - Mathematics |
hierarchy_top_title |
Microsystem technologies |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 |
title |
Phononic band engineering for thermal conduction control and similarity with photonic band engineering |
ctrlnum |
(DE-627)OLC2034942701 (DE-He213)s00542-015-2569-5-p |
title_full |
Phononic band engineering for thermal conduction control and similarity with photonic band engineering |
author_sort |
Nomura, Masahiro |
journal |
Microsystem technologies |
journalStr |
Microsystem technologies |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
473 |
author_browse |
Nomura, Masahiro |
container_volume |
22 |
class |
620 VZ 510 VZ |
format_se |
Aufsätze |
author-letter |
Nomura, Masahiro |
doi_str_mv |
10.1007/s00542-015-2569-5 |
dewey-full |
620 510 |
title_sort |
phononic band engineering for thermal conduction control and similarity with photonic band engineering |
title_auth |
Phononic band engineering for thermal conduction control and similarity with photonic band engineering |
abstract |
Abstract There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports are discussed. The coherent manipulation of phonon transport by phononic crystal nanostructures is investigated. The possibility of thermal conduction nanoengineering with some simulation results in silicon at room temperature is discussed. The multiscale physics of thermal phonons makes coherent phonon transport control, i.e., heat transfer, more difficult. Clear reduction in a one-dimensional Si phonic crystal nanostructure compared with a nanowire of similar width is demonstrated. However, for clear demonstration of thermal conductivity control by phononic effect, low temperature measurements and/or smaller dimension will be required. © Springer-Verlag Berlin Heidelberg 2015 |
abstractGer |
Abstract There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports are discussed. The coherent manipulation of phonon transport by phononic crystal nanostructures is investigated. The possibility of thermal conduction nanoengineering with some simulation results in silicon at room temperature is discussed. The multiscale physics of thermal phonons makes coherent phonon transport control, i.e., heat transfer, more difficult. Clear reduction in a one-dimensional Si phonic crystal nanostructure compared with a nanowire of similar width is demonstrated. However, for clear demonstration of thermal conductivity control by phononic effect, low temperature measurements and/or smaller dimension will be required. © Springer-Verlag Berlin Heidelberg 2015 |
abstract_unstemmed |
Abstract There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports are discussed. The coherent manipulation of phonon transport by phononic crystal nanostructures is investigated. The possibility of thermal conduction nanoengineering with some simulation results in silicon at room temperature is discussed. The multiscale physics of thermal phonons makes coherent phonon transport control, i.e., heat transfer, more difficult. Clear reduction in a one-dimensional Si phonic crystal nanostructure compared with a nanowire of similar width is demonstrated. However, for clear demonstration of thermal conductivity control by phononic effect, low temperature measurements and/or smaller dimension will be required. © Springer-Verlag Berlin Heidelberg 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_4277 |
container_issue |
3 |
title_short |
Phononic band engineering for thermal conduction control and similarity with photonic band engineering |
url |
https://doi.org/10.1007/s00542-015-2569-5 |
remote_bool |
false |
ppnlink |
182644278 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00542-015-2569-5 |
up_date |
2024-07-03T23:07:27.848Z |
_version_ |
1803601101822361601 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034942701</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502121514.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00542-015-2569-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034942701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00542-015-2569-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nomura, Masahiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phononic band engineering for thermal conduction control and similarity with photonic band engineering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There are some physical similarities in photonics and phononics; photon and phonon transports can be coherently controlled by micro/nanoscale artificial crystal structures known as a photonic crystal and a phononic crystal. Similarities and non-similarities of photon and phonon transports are discussed. The coherent manipulation of phonon transport by phononic crystal nanostructures is investigated. The possibility of thermal conduction nanoengineering with some simulation results in silicon at room temperature is discussed. The multiscale physics of thermal phonons makes coherent phonon transport control, i.e., heat transfer, more difficult. Clear reduction in a one-dimensional Si phonic crystal nanostructure compared with a nanowire of similar width is demonstrated. However, for clear demonstration of thermal conductivity control by phononic effect, low temperature measurements and/or smaller dimension will be required.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phononic Crystal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mean Free Path</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phononic Band</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phonon Transport</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Phonon</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microsystem technologies</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">22(2015), 3 vom: 14. Mai, Seite 473-480</subfield><subfield code="w">(DE-627)182644278</subfield><subfield code="w">(DE-600)1223008-X</subfield><subfield code="w">(DE-576)045302146</subfield><subfield code="x">0946-7076</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:14</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:473-480</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00542-015-2569-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">14</subfield><subfield code="c">05</subfield><subfield code="h">473-480</subfield></datafield></record></collection>
|
score |
7.4017773 |