Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions
Abstract A model of nonlocal thermoelasticity theory of Green and Naghdi without energy dissipation is used to consider the vibration behavior of a nano-machined resonator. The nonlocality brings in an internal length scale in the formulation and, thus, allows for the interpretation of size effects....
Ausführliche Beschreibung
Autor*in: |
Zenkour, Ashraf M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Microsystem technologies - Springer Berlin Heidelberg, 1994, 23(2015), 1 vom: 17. Okt., Seite 55-65 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2015 ; number:1 ; day:17 ; month:10 ; pages:55-65 |
Links: |
---|
DOI / URN: |
10.1007/s00542-015-2703-4 |
---|
Katalog-ID: |
OLC2034945409 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034945409 | ||
003 | DE-627 | ||
005 | 20230502121528.0 | ||
007 | tu | ||
008 | 200820s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00542-015-2703-4 |2 doi | |
035 | |a (DE-627)OLC2034945409 | ||
035 | |a (DE-He213)s00542-015-2703-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Zenkour, Ashraf M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2015 | ||
520 | |a Abstract A model of nonlocal thermoelasticity theory of Green and Naghdi without energy dissipation is used to consider the vibration behavior of a nano-machined resonator. The nonlocality brings in an internal length scale in the formulation and, thus, allows for the interpretation of size effects. The governing frequency equation is given for nanobeams subjected to different boundary conditions. A combination of simply-supported, clamped, and free boundary conditions is investigated. The effect of side-to-thickness and aspect ratios, as well as the influence of either nonlocal parameter or thermoelastic coupling are all investigated. In addition, the effect of environmental temperature T0 on the vibration frequency is also investigated. | ||
650 | 4 | |a Nonlocal Parameter | |
650 | 4 | |a Nonlocal Elasticity | |
650 | 4 | |a Nonlocal Theory | |
650 | 4 | |a Nonlocal Elasticity Theory | |
650 | 4 | |a Thermoelastic Coupling | |
773 | 0 | 8 | |i Enthalten in |t Microsystem technologies |d Springer Berlin Heidelberg, 1994 |g 23(2015), 1 vom: 17. Okt., Seite 55-65 |w (DE-627)182644278 |w (DE-600)1223008-X |w (DE-576)045302146 |x 0946-7076 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2015 |g number:1 |g day:17 |g month:10 |g pages:55-65 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00542-015-2703-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 23 |j 2015 |e 1 |b 17 |c 10 |h 55-65 |
author_variant |
a m z am amz |
---|---|
matchkey_str |
article:09467076:2015----::olclhrolsiiyhoyihueegdsiainonnmciebarsntrsb |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s00542-015-2703-4 doi (DE-627)OLC2034945409 (DE-He213)s00542-015-2703-4-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Zenkour, Ashraf M. verfasserin aut Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract A model of nonlocal thermoelasticity theory of Green and Naghdi without energy dissipation is used to consider the vibration behavior of a nano-machined resonator. The nonlocality brings in an internal length scale in the formulation and, thus, allows for the interpretation of size effects. The governing frequency equation is given for nanobeams subjected to different boundary conditions. A combination of simply-supported, clamped, and free boundary conditions is investigated. The effect of side-to-thickness and aspect ratios, as well as the influence of either nonlocal parameter or thermoelastic coupling are all investigated. In addition, the effect of environmental temperature T0 on the vibration frequency is also investigated. Nonlocal Parameter Nonlocal Elasticity Nonlocal Theory Nonlocal Elasticity Theory Thermoelastic Coupling Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 23(2015), 1 vom: 17. Okt., Seite 55-65 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:23 year:2015 number:1 day:17 month:10 pages:55-65 https://doi.org/10.1007/s00542-015-2703-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_4277 AR 23 2015 1 17 10 55-65 |
spelling |
10.1007/s00542-015-2703-4 doi (DE-627)OLC2034945409 (DE-He213)s00542-015-2703-4-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Zenkour, Ashraf M. verfasserin aut Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract A model of nonlocal thermoelasticity theory of Green and Naghdi without energy dissipation is used to consider the vibration behavior of a nano-machined resonator. The nonlocality brings in an internal length scale in the formulation and, thus, allows for the interpretation of size effects. The governing frequency equation is given for nanobeams subjected to different boundary conditions. A combination of simply-supported, clamped, and free boundary conditions is investigated. The effect of side-to-thickness and aspect ratios, as well as the influence of either nonlocal parameter or thermoelastic coupling are all investigated. In addition, the effect of environmental temperature T0 on the vibration frequency is also investigated. Nonlocal Parameter Nonlocal Elasticity Nonlocal Theory Nonlocal Elasticity Theory Thermoelastic Coupling Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 23(2015), 1 vom: 17. Okt., Seite 55-65 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:23 year:2015 number:1 day:17 month:10 pages:55-65 https://doi.org/10.1007/s00542-015-2703-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_4277 AR 23 2015 1 17 10 55-65 |
allfields_unstemmed |
10.1007/s00542-015-2703-4 doi (DE-627)OLC2034945409 (DE-He213)s00542-015-2703-4-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Zenkour, Ashraf M. verfasserin aut Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract A model of nonlocal thermoelasticity theory of Green and Naghdi without energy dissipation is used to consider the vibration behavior of a nano-machined resonator. The nonlocality brings in an internal length scale in the formulation and, thus, allows for the interpretation of size effects. The governing frequency equation is given for nanobeams subjected to different boundary conditions. A combination of simply-supported, clamped, and free boundary conditions is investigated. The effect of side-to-thickness and aspect ratios, as well as the influence of either nonlocal parameter or thermoelastic coupling are all investigated. In addition, the effect of environmental temperature T0 on the vibration frequency is also investigated. Nonlocal Parameter Nonlocal Elasticity Nonlocal Theory Nonlocal Elasticity Theory Thermoelastic Coupling Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 23(2015), 1 vom: 17. Okt., Seite 55-65 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:23 year:2015 number:1 day:17 month:10 pages:55-65 https://doi.org/10.1007/s00542-015-2703-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_4277 AR 23 2015 1 17 10 55-65 |
allfieldsGer |
10.1007/s00542-015-2703-4 doi (DE-627)OLC2034945409 (DE-He213)s00542-015-2703-4-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Zenkour, Ashraf M. verfasserin aut Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract A model of nonlocal thermoelasticity theory of Green and Naghdi without energy dissipation is used to consider the vibration behavior of a nano-machined resonator. The nonlocality brings in an internal length scale in the formulation and, thus, allows for the interpretation of size effects. The governing frequency equation is given for nanobeams subjected to different boundary conditions. A combination of simply-supported, clamped, and free boundary conditions is investigated. The effect of side-to-thickness and aspect ratios, as well as the influence of either nonlocal parameter or thermoelastic coupling are all investigated. In addition, the effect of environmental temperature T0 on the vibration frequency is also investigated. Nonlocal Parameter Nonlocal Elasticity Nonlocal Theory Nonlocal Elasticity Theory Thermoelastic Coupling Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 23(2015), 1 vom: 17. Okt., Seite 55-65 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:23 year:2015 number:1 day:17 month:10 pages:55-65 https://doi.org/10.1007/s00542-015-2703-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_4277 AR 23 2015 1 17 10 55-65 |
allfieldsSound |
10.1007/s00542-015-2703-4 doi (DE-627)OLC2034945409 (DE-He213)s00542-015-2703-4-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Zenkour, Ashraf M. verfasserin aut Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2015 Abstract A model of nonlocal thermoelasticity theory of Green and Naghdi without energy dissipation is used to consider the vibration behavior of a nano-machined resonator. The nonlocality brings in an internal length scale in the formulation and, thus, allows for the interpretation of size effects. The governing frequency equation is given for nanobeams subjected to different boundary conditions. A combination of simply-supported, clamped, and free boundary conditions is investigated. The effect of side-to-thickness and aspect ratios, as well as the influence of either nonlocal parameter or thermoelastic coupling are all investigated. In addition, the effect of environmental temperature T0 on the vibration frequency is also investigated. Nonlocal Parameter Nonlocal Elasticity Nonlocal Theory Nonlocal Elasticity Theory Thermoelastic Coupling Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 23(2015), 1 vom: 17. Okt., Seite 55-65 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:23 year:2015 number:1 day:17 month:10 pages:55-65 https://doi.org/10.1007/s00542-015-2703-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_4277 AR 23 2015 1 17 10 55-65 |
language |
English |
source |
Enthalten in Microsystem technologies 23(2015), 1 vom: 17. Okt., Seite 55-65 volume:23 year:2015 number:1 day:17 month:10 pages:55-65 |
sourceStr |
Enthalten in Microsystem technologies 23(2015), 1 vom: 17. Okt., Seite 55-65 volume:23 year:2015 number:1 day:17 month:10 pages:55-65 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nonlocal Parameter Nonlocal Elasticity Nonlocal Theory Nonlocal Elasticity Theory Thermoelastic Coupling |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Microsystem technologies |
authorswithroles_txt_mv |
Zenkour, Ashraf M. @@aut@@ |
publishDateDaySort_date |
2015-10-17T00:00:00Z |
hierarchy_top_id |
182644278 |
dewey-sort |
3620 |
id |
OLC2034945409 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034945409</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502121528.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00542-015-2703-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034945409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00542-015-2703-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zenkour, Ashraf M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A model of nonlocal thermoelasticity theory of Green and Naghdi without energy dissipation is used to consider the vibration behavior of a nano-machined resonator. The nonlocality brings in an internal length scale in the formulation and, thus, allows for the interpretation of size effects. The governing frequency equation is given for nanobeams subjected to different boundary conditions. A combination of simply-supported, clamped, and free boundary conditions is investigated. The effect of side-to-thickness and aspect ratios, as well as the influence of either nonlocal parameter or thermoelastic coupling are all investigated. In addition, the effect of environmental temperature T0 on the vibration frequency is also investigated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal Parameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal Elasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal Elasticity Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelastic Coupling</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microsystem technologies</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">23(2015), 1 vom: 17. Okt., Seite 55-65</subfield><subfield code="w">(DE-627)182644278</subfield><subfield code="w">(DE-600)1223008-X</subfield><subfield code="w">(DE-576)045302146</subfield><subfield code="x">0946-7076</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:55-65</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00542-015-2703-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">10</subfield><subfield code="h">55-65</subfield></datafield></record></collection>
|
author |
Zenkour, Ashraf M. |
spellingShingle |
Zenkour, Ashraf M. ddc 620 ddc 510 misc Nonlocal Parameter misc Nonlocal Elasticity misc Nonlocal Theory misc Nonlocal Elasticity Theory misc Thermoelastic Coupling Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions |
authorStr |
Zenkour, Ashraf M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182644278 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0946-7076 |
topic_title |
620 VZ 510 VZ Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions Nonlocal Parameter Nonlocal Elasticity Nonlocal Theory Nonlocal Elasticity Theory Thermoelastic Coupling |
topic |
ddc 620 ddc 510 misc Nonlocal Parameter misc Nonlocal Elasticity misc Nonlocal Theory misc Nonlocal Elasticity Theory misc Thermoelastic Coupling |
topic_unstemmed |
ddc 620 ddc 510 misc Nonlocal Parameter misc Nonlocal Elasticity misc Nonlocal Theory misc Nonlocal Elasticity Theory misc Thermoelastic Coupling |
topic_browse |
ddc 620 ddc 510 misc Nonlocal Parameter misc Nonlocal Elasticity misc Nonlocal Theory misc Nonlocal Elasticity Theory misc Thermoelastic Coupling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Microsystem technologies |
hierarchy_parent_id |
182644278 |
dewey-tens |
620 - Engineering 510 - Mathematics |
hierarchy_top_title |
Microsystem technologies |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 |
title |
Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions |
ctrlnum |
(DE-627)OLC2034945409 (DE-He213)s00542-015-2703-4-p |
title_full |
Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions |
author_sort |
Zenkour, Ashraf M. |
journal |
Microsystem technologies |
journalStr |
Microsystem technologies |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
55 |
author_browse |
Zenkour, Ashraf M. |
container_volume |
23 |
class |
620 VZ 510 VZ |
format_se |
Aufsätze |
author-letter |
Zenkour, Ashraf M. |
doi_str_mv |
10.1007/s00542-015-2703-4 |
dewey-full |
620 510 |
title_sort |
nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions |
title_auth |
Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions |
abstract |
Abstract A model of nonlocal thermoelasticity theory of Green and Naghdi without energy dissipation is used to consider the vibration behavior of a nano-machined resonator. The nonlocality brings in an internal length scale in the formulation and, thus, allows for the interpretation of size effects. The governing frequency equation is given for nanobeams subjected to different boundary conditions. A combination of simply-supported, clamped, and free boundary conditions is investigated. The effect of side-to-thickness and aspect ratios, as well as the influence of either nonlocal parameter or thermoelastic coupling are all investigated. In addition, the effect of environmental temperature T0 on the vibration frequency is also investigated. © Springer-Verlag Berlin Heidelberg 2015 |
abstractGer |
Abstract A model of nonlocal thermoelasticity theory of Green and Naghdi without energy dissipation is used to consider the vibration behavior of a nano-machined resonator. The nonlocality brings in an internal length scale in the formulation and, thus, allows for the interpretation of size effects. The governing frequency equation is given for nanobeams subjected to different boundary conditions. A combination of simply-supported, clamped, and free boundary conditions is investigated. The effect of side-to-thickness and aspect ratios, as well as the influence of either nonlocal parameter or thermoelastic coupling are all investigated. In addition, the effect of environmental temperature T0 on the vibration frequency is also investigated. © Springer-Verlag Berlin Heidelberg 2015 |
abstract_unstemmed |
Abstract A model of nonlocal thermoelasticity theory of Green and Naghdi without energy dissipation is used to consider the vibration behavior of a nano-machined resonator. The nonlocality brings in an internal length scale in the formulation and, thus, allows for the interpretation of size effects. The governing frequency equation is given for nanobeams subjected to different boundary conditions. A combination of simply-supported, clamped, and free boundary conditions is investigated. The effect of side-to-thickness and aspect ratios, as well as the influence of either nonlocal parameter or thermoelastic coupling are all investigated. In addition, the effect of environmental temperature T0 on the vibration frequency is also investigated. © Springer-Verlag Berlin Heidelberg 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_2048 GBV_ILN_4277 |
container_issue |
1 |
title_short |
Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions |
url |
https://doi.org/10.1007/s00542-015-2703-4 |
remote_bool |
false |
ppnlink |
182644278 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00542-015-2703-4 |
up_date |
2024-07-03T23:08:15.524Z |
_version_ |
1803601151813222400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034945409</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502121528.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00542-015-2703-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034945409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00542-015-2703-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zenkour, Ashraf M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A model of nonlocal thermoelasticity theory of Green and Naghdi without energy dissipation is used to consider the vibration behavior of a nano-machined resonator. The nonlocality brings in an internal length scale in the formulation and, thus, allows for the interpretation of size effects. The governing frequency equation is given for nanobeams subjected to different boundary conditions. A combination of simply-supported, clamped, and free boundary conditions is investigated. The effect of side-to-thickness and aspect ratios, as well as the influence of either nonlocal parameter or thermoelastic coupling are all investigated. In addition, the effect of environmental temperature T0 on the vibration frequency is also investigated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal Parameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal Elasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlocal Elasticity Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermoelastic Coupling</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microsystem technologies</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">23(2015), 1 vom: 17. Okt., Seite 55-65</subfield><subfield code="w">(DE-627)182644278</subfield><subfield code="w">(DE-600)1223008-X</subfield><subfield code="w">(DE-576)045302146</subfield><subfield code="x">0946-7076</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:17</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:55-65</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00542-015-2703-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">17</subfield><subfield code="c">10</subfield><subfield code="h">55-65</subfield></datafield></record></collection>
|
score |
7.4001446 |