Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions
Abstract Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbo...
Ausführliche Beschreibung
Autor*in: |
Fattahi, A. M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag Berlin Heidelberg 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Microsystem technologies - Springer Berlin Heidelberg, 1994, 23(2017), 10 vom: 03. März, Seite 5079-5091 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2017 ; number:10 ; day:03 ; month:03 ; pages:5079-5091 |
Links: |
---|
DOI / URN: |
10.1007/s00542-017-3345-5 |
---|
Katalog-ID: |
OLC2034950054 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034950054 | ||
003 | DE-627 | ||
005 | 20230502121534.0 | ||
007 | tu | ||
008 | 200820s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00542-017-3345-5 |2 doi | |
035 | |a (DE-627)OLC2034950054 | ||
035 | |a (DE-He213)s00542-017-3345-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Fattahi, A. M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag Berlin Heidelberg 2017 | ||
520 | |a Abstract Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams are obtained using molecular dynamic (MD) simulation corresponding to both of short-(10,10) SWCNT and long-(10,10) SWCNT composites which are embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations are matched with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. Selected numerical results are presented to indicate the influences of nanotube volume fraction and end supports on the critical axial buckling loads of nanoconposite beams relevant to long- and short-nanotube composites. | ||
650 | 4 | |a Beam Theory | |
650 | 4 | |a Composite Beam | |
650 | 4 | |a Timoshenko Beam Theory | |
650 | 4 | |a Bernoulli Beam Theory | |
650 | 4 | |a Generalize Differential Quadrature | |
700 | 1 | |a Safaei, Babak |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Microsystem technologies |d Springer Berlin Heidelberg, 1994 |g 23(2017), 10 vom: 03. März, Seite 5079-5091 |w (DE-627)182644278 |w (DE-600)1223008-X |w (DE-576)045302146 |x 0946-7076 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2017 |g number:10 |g day:03 |g month:03 |g pages:5079-5091 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00542-017-3345-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 23 |j 2017 |e 10 |b 03 |c 03 |h 5079-5091 |
author_variant |
a m f am amf b s bs |
---|---|
matchkey_str |
article:09467076:2017----::ukignlssfnrifrebasihrirr |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s00542-017-3345-5 doi (DE-627)OLC2034950054 (DE-He213)s00542-017-3345-5-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Fattahi, A. M. verfasserin aut Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams are obtained using molecular dynamic (MD) simulation corresponding to both of short-(10,10) SWCNT and long-(10,10) SWCNT composites which are embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations are matched with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. Selected numerical results are presented to indicate the influences of nanotube volume fraction and end supports on the critical axial buckling loads of nanoconposite beams relevant to long- and short-nanotube composites. Beam Theory Composite Beam Timoshenko Beam Theory Bernoulli Beam Theory Generalize Differential Quadrature Safaei, Babak aut Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 23(2017), 10 vom: 03. März, Seite 5079-5091 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:23 year:2017 number:10 day:03 month:03 pages:5079-5091 https://doi.org/10.1007/s00542-017-3345-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2017 10 03 03 5079-5091 |
spelling |
10.1007/s00542-017-3345-5 doi (DE-627)OLC2034950054 (DE-He213)s00542-017-3345-5-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Fattahi, A. M. verfasserin aut Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams are obtained using molecular dynamic (MD) simulation corresponding to both of short-(10,10) SWCNT and long-(10,10) SWCNT composites which are embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations are matched with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. Selected numerical results are presented to indicate the influences of nanotube volume fraction and end supports on the critical axial buckling loads of nanoconposite beams relevant to long- and short-nanotube composites. Beam Theory Composite Beam Timoshenko Beam Theory Bernoulli Beam Theory Generalize Differential Quadrature Safaei, Babak aut Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 23(2017), 10 vom: 03. März, Seite 5079-5091 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:23 year:2017 number:10 day:03 month:03 pages:5079-5091 https://doi.org/10.1007/s00542-017-3345-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2017 10 03 03 5079-5091 |
allfields_unstemmed |
10.1007/s00542-017-3345-5 doi (DE-627)OLC2034950054 (DE-He213)s00542-017-3345-5-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Fattahi, A. M. verfasserin aut Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams are obtained using molecular dynamic (MD) simulation corresponding to both of short-(10,10) SWCNT and long-(10,10) SWCNT composites which are embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations are matched with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. Selected numerical results are presented to indicate the influences of nanotube volume fraction and end supports on the critical axial buckling loads of nanoconposite beams relevant to long- and short-nanotube composites. Beam Theory Composite Beam Timoshenko Beam Theory Bernoulli Beam Theory Generalize Differential Quadrature Safaei, Babak aut Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 23(2017), 10 vom: 03. März, Seite 5079-5091 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:23 year:2017 number:10 day:03 month:03 pages:5079-5091 https://doi.org/10.1007/s00542-017-3345-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2017 10 03 03 5079-5091 |
allfieldsGer |
10.1007/s00542-017-3345-5 doi (DE-627)OLC2034950054 (DE-He213)s00542-017-3345-5-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Fattahi, A. M. verfasserin aut Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams are obtained using molecular dynamic (MD) simulation corresponding to both of short-(10,10) SWCNT and long-(10,10) SWCNT composites which are embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations are matched with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. Selected numerical results are presented to indicate the influences of nanotube volume fraction and end supports on the critical axial buckling loads of nanoconposite beams relevant to long- and short-nanotube composites. Beam Theory Composite Beam Timoshenko Beam Theory Bernoulli Beam Theory Generalize Differential Quadrature Safaei, Babak aut Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 23(2017), 10 vom: 03. März, Seite 5079-5091 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:23 year:2017 number:10 day:03 month:03 pages:5079-5091 https://doi.org/10.1007/s00542-017-3345-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2017 10 03 03 5079-5091 |
allfieldsSound |
10.1007/s00542-017-3345-5 doi (DE-627)OLC2034950054 (DE-He213)s00542-017-3345-5-p DE-627 ger DE-627 rakwb eng 620 VZ 510 VZ Fattahi, A. M. verfasserin aut Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag Berlin Heidelberg 2017 Abstract Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams are obtained using molecular dynamic (MD) simulation corresponding to both of short-(10,10) SWCNT and long-(10,10) SWCNT composites which are embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations are matched with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. Selected numerical results are presented to indicate the influences of nanotube volume fraction and end supports on the critical axial buckling loads of nanoconposite beams relevant to long- and short-nanotube composites. Beam Theory Composite Beam Timoshenko Beam Theory Bernoulli Beam Theory Generalize Differential Quadrature Safaei, Babak aut Enthalten in Microsystem technologies Springer Berlin Heidelberg, 1994 23(2017), 10 vom: 03. März, Seite 5079-5091 (DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 0946-7076 nnns volume:23 year:2017 number:10 day:03 month:03 pages:5079-5091 https://doi.org/10.1007/s00542-017-3345-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 23 2017 10 03 03 5079-5091 |
language |
English |
source |
Enthalten in Microsystem technologies 23(2017), 10 vom: 03. März, Seite 5079-5091 volume:23 year:2017 number:10 day:03 month:03 pages:5079-5091 |
sourceStr |
Enthalten in Microsystem technologies 23(2017), 10 vom: 03. März, Seite 5079-5091 volume:23 year:2017 number:10 day:03 month:03 pages:5079-5091 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Beam Theory Composite Beam Timoshenko Beam Theory Bernoulli Beam Theory Generalize Differential Quadrature |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Microsystem technologies |
authorswithroles_txt_mv |
Fattahi, A. M. @@aut@@ Safaei, Babak @@aut@@ |
publishDateDaySort_date |
2017-03-03T00:00:00Z |
hierarchy_top_id |
182644278 |
dewey-sort |
3620 |
id |
OLC2034950054 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034950054</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502121534.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00542-017-3345-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034950054</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00542-017-3345-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fattahi, A. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams are obtained using molecular dynamic (MD) simulation corresponding to both of short-(10,10) SWCNT and long-(10,10) SWCNT composites which are embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations are matched with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. Selected numerical results are presented to indicate the influences of nanotube volume fraction and end supports on the critical axial buckling loads of nanoconposite beams relevant to long- and short-nanotube composites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Beam Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composite Beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Timoshenko Beam Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bernoulli Beam Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalize Differential Quadrature</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Safaei, Babak</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microsystem technologies</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">23(2017), 10 vom: 03. März, Seite 5079-5091</subfield><subfield code="w">(DE-627)182644278</subfield><subfield code="w">(DE-600)1223008-X</subfield><subfield code="w">(DE-576)045302146</subfield><subfield code="x">0946-7076</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">day:03</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:5079-5091</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00542-017-3345-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="b">03</subfield><subfield code="c">03</subfield><subfield code="h">5079-5091</subfield></datafield></record></collection>
|
author |
Fattahi, A. M. |
spellingShingle |
Fattahi, A. M. ddc 620 ddc 510 misc Beam Theory misc Composite Beam misc Timoshenko Beam Theory misc Bernoulli Beam Theory misc Generalize Differential Quadrature Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions |
authorStr |
Fattahi, A. M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182644278 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0946-7076 |
topic_title |
620 VZ 510 VZ Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions Beam Theory Composite Beam Timoshenko Beam Theory Bernoulli Beam Theory Generalize Differential Quadrature |
topic |
ddc 620 ddc 510 misc Beam Theory misc Composite Beam misc Timoshenko Beam Theory misc Bernoulli Beam Theory misc Generalize Differential Quadrature |
topic_unstemmed |
ddc 620 ddc 510 misc Beam Theory misc Composite Beam misc Timoshenko Beam Theory misc Bernoulli Beam Theory misc Generalize Differential Quadrature |
topic_browse |
ddc 620 ddc 510 misc Beam Theory misc Composite Beam misc Timoshenko Beam Theory misc Bernoulli Beam Theory misc Generalize Differential Quadrature |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Microsystem technologies |
hierarchy_parent_id |
182644278 |
dewey-tens |
620 - Engineering 510 - Mathematics |
hierarchy_top_title |
Microsystem technologies |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182644278 (DE-600)1223008-X (DE-576)045302146 |
title |
Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions |
ctrlnum |
(DE-627)OLC2034950054 (DE-He213)s00542-017-3345-5-p |
title_full |
Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions |
author_sort |
Fattahi, A. M. |
journal |
Microsystem technologies |
journalStr |
Microsystem technologies |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
5079 |
author_browse |
Fattahi, A. M. Safaei, Babak |
container_volume |
23 |
class |
620 VZ 510 VZ |
format_se |
Aufsätze |
author-letter |
Fattahi, A. M. |
doi_str_mv |
10.1007/s00542-017-3345-5 |
dewey-full |
620 510 |
title_sort |
buckling analysis of cnt-reinforced beams with arbitrary boundary conditions |
title_auth |
Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions |
abstract |
Abstract Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams are obtained using molecular dynamic (MD) simulation corresponding to both of short-(10,10) SWCNT and long-(10,10) SWCNT composites which are embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations are matched with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. Selected numerical results are presented to indicate the influences of nanotube volume fraction and end supports on the critical axial buckling loads of nanoconposite beams relevant to long- and short-nanotube composites. © Springer-Verlag Berlin Heidelberg 2017 |
abstractGer |
Abstract Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams are obtained using molecular dynamic (MD) simulation corresponding to both of short-(10,10) SWCNT and long-(10,10) SWCNT composites which are embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations are matched with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. Selected numerical results are presented to indicate the influences of nanotube volume fraction and end supports on the critical axial buckling loads of nanoconposite beams relevant to long- and short-nanotube composites. © Springer-Verlag Berlin Heidelberg 2017 |
abstract_unstemmed |
Abstract Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams are obtained using molecular dynamic (MD) simulation corresponding to both of short-(10,10) SWCNT and long-(10,10) SWCNT composites which are embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations are matched with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. Selected numerical results are presented to indicate the influences of nanotube volume fraction and end supports on the critical axial buckling loads of nanoconposite beams relevant to long- and short-nanotube composites. © Springer-Verlag Berlin Heidelberg 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
10 |
title_short |
Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions |
url |
https://doi.org/10.1007/s00542-017-3345-5 |
remote_bool |
false |
author2 |
Safaei, Babak |
author2Str |
Safaei, Babak |
ppnlink |
182644278 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00542-017-3345-5 |
up_date |
2024-07-03T23:09:34.563Z |
_version_ |
1803601234691620864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034950054</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502121534.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00542-017-3345-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034950054</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00542-017-3345-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fattahi, A. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag Berlin Heidelberg 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams are obtained using molecular dynamic (MD) simulation corresponding to both of short-(10,10) SWCNT and long-(10,10) SWCNT composites which are embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations are matched with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. Selected numerical results are presented to indicate the influences of nanotube volume fraction and end supports on the critical axial buckling loads of nanoconposite beams relevant to long- and short-nanotube composites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Beam Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Composite Beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Timoshenko Beam Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bernoulli Beam Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalize Differential Quadrature</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Safaei, Babak</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microsystem technologies</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">23(2017), 10 vom: 03. März, Seite 5079-5091</subfield><subfield code="w">(DE-627)182644278</subfield><subfield code="w">(DE-600)1223008-X</subfield><subfield code="w">(DE-576)045302146</subfield><subfield code="x">0946-7076</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">day:03</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:5079-5091</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00542-017-3345-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="b">03</subfield><subfield code="c">03</subfield><subfield code="h">5079-5091</subfield></datafield></record></collection>
|
score |
7.4008617 |