Cusp Modeling and Observations at Low Altitude
Abstract Cusp properties have been investigated with an open-field line particle precipitation model and Defense Meteorological Satellite Program (DMSP) satellite observations. Particular emphasis is placed on the effects of IMF $ B_{y} $, since previous studies focus mostly on IMF $ B_{z} $. The mo...
Ausführliche Beschreibung
Autor*in: |
Wing, S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer 2005 |
---|
Übergeordnetes Werk: |
Enthalten in: Surveys in geophysics - Kluwer Academic Publishers, 1986, 26(2005), 1-3 vom: Jan., Seite 341-367 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2005 ; number:1-3 ; month:01 ; pages:341-367 |
Links: |
---|
DOI / URN: |
10.1007/s10712-005-1886-0 |
---|
Katalog-ID: |
OLC2034987896 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2034987896 | ||
003 | DE-627 | ||
005 | 20230503063644.0 | ||
007 | tu | ||
008 | 200819s2005 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10712-005-1886-0 |2 doi | |
035 | |a (DE-627)OLC2034987896 | ||
035 | |a (DE-He213)s10712-005-1886-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 16,13 |2 ssgn | ||
100 | 1 | |a Wing, S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cusp Modeling and Observations at Low Altitude |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer 2005 | ||
520 | |a Abstract Cusp properties have been investigated with an open-field line particle precipitation model and Defense Meteorological Satellite Program (DMSP) satellite observations. Particular emphasis is placed on the effects of IMF $ B_{y} $, since previous studies focus mostly on IMF $ B_{z} $. The model-data comparisons for various IMF configurations show that the model captures the large-scale features of the particle precipitation very well, not only in the cusp region, but also in other open-field line regions such as the mantle, polar rain, and open-field line low-altitude boundary layer (LLBL). When the IMF is strongly duskward/dawnward and weakly southward, the model predicts the occurrence of double cusp near noon: one cusp at lower latitude and one at higher latitude. The lower latitude cusp ions originate from the low-latitude magnetosheath whereas the higher latitude ions originate from the high-latitude magnetosheath. The lower latitude cusp is located in the region of weak azimuthal E × B drift, resulting in a dispersionless cusp. The higher latitude cusp is located in the region of strong azimuthal and poleward E × B drift. Because of a significant poleward drift, the higher latitude cusp dispersion has some resemblance to that of the typical southward IMF cusp. Occasionally, the two parts of the double cusp have such narrow latitudinal separation that they give the appearance of just one cusp with extended latitudinal width. From the 40 DMSP passes selected during periods of large (positive or negative) IMF $ B_{y} $ and small negative IMF $ B_{z} $, 30 (75%) of the passes exhibit double cusps or cusps with extended latitudinal width. The double cusp result is consistent with the following statistical results: (1) the cusp’s latitudinal width increases with |IMF $ B_{y} $| and (2) the cusp’s equatorward boundary moves to lower latitude with increasing |IMF $ B_{y} $|. | ||
650 | 4 | |a cusp | |
650 | 4 | |a double magnetopause | |
650 | 4 | |a reconnection | |
700 | 1 | |a Newell, P. T. |4 aut | |
700 | 1 | |a Meng, C.-I. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Surveys in geophysics |d Kluwer Academic Publishers, 1986 |g 26(2005), 1-3 vom: Jan., Seite 341-367 |w (DE-627)129582107 |w (DE-600)232801-X |w (DE-576)053589092 |x 0169-3298 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2005 |g number:1-3 |g month:01 |g pages:341-367 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10712-005-1886-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4307 | ||
951 | |a AR | ||
952 | |d 26 |j 2005 |e 1-3 |c 01 |h 341-367 |
author_variant |
s w sw p t n pt ptn c i m cim |
---|---|
matchkey_str |
article:01693298:2005----::upoeignosrainal |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1007/s10712-005-1886-0 doi (DE-627)OLC2034987896 (DE-He213)s10712-005-1886-0-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Wing, S. verfasserin aut Cusp Modeling and Observations at Low Altitude 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2005 Abstract Cusp properties have been investigated with an open-field line particle precipitation model and Defense Meteorological Satellite Program (DMSP) satellite observations. Particular emphasis is placed on the effects of IMF $ B_{y} $, since previous studies focus mostly on IMF $ B_{z} $. The model-data comparisons for various IMF configurations show that the model captures the large-scale features of the particle precipitation very well, not only in the cusp region, but also in other open-field line regions such as the mantle, polar rain, and open-field line low-altitude boundary layer (LLBL). When the IMF is strongly duskward/dawnward and weakly southward, the model predicts the occurrence of double cusp near noon: one cusp at lower latitude and one at higher latitude. The lower latitude cusp ions originate from the low-latitude magnetosheath whereas the higher latitude ions originate from the high-latitude magnetosheath. The lower latitude cusp is located in the region of weak azimuthal E × B drift, resulting in a dispersionless cusp. The higher latitude cusp is located in the region of strong azimuthal and poleward E × B drift. Because of a significant poleward drift, the higher latitude cusp dispersion has some resemblance to that of the typical southward IMF cusp. Occasionally, the two parts of the double cusp have such narrow latitudinal separation that they give the appearance of just one cusp with extended latitudinal width. From the 40 DMSP passes selected during periods of large (positive or negative) IMF $ B_{y} $ and small negative IMF $ B_{z} $, 30 (75%) of the passes exhibit double cusps or cusps with extended latitudinal width. The double cusp result is consistent with the following statistical results: (1) the cusp’s latitudinal width increases with |IMF $ B_{y} $| and (2) the cusp’s equatorward boundary moves to lower latitude with increasing |IMF $ B_{y} $|. cusp double magnetopause reconnection Newell, P. T. aut Meng, C.-I. aut Enthalten in Surveys in geophysics Kluwer Academic Publishers, 1986 26(2005), 1-3 vom: Jan., Seite 341-367 (DE-627)129582107 (DE-600)232801-X (DE-576)053589092 0169-3298 nnns volume:26 year:2005 number:1-3 month:01 pages:341-367 https://doi.org/10.1007/s10712-005-1886-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4307 AR 26 2005 1-3 01 341-367 |
spelling |
10.1007/s10712-005-1886-0 doi (DE-627)OLC2034987896 (DE-He213)s10712-005-1886-0-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Wing, S. verfasserin aut Cusp Modeling and Observations at Low Altitude 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2005 Abstract Cusp properties have been investigated with an open-field line particle precipitation model and Defense Meteorological Satellite Program (DMSP) satellite observations. Particular emphasis is placed on the effects of IMF $ B_{y} $, since previous studies focus mostly on IMF $ B_{z} $. The model-data comparisons for various IMF configurations show that the model captures the large-scale features of the particle precipitation very well, not only in the cusp region, but also in other open-field line regions such as the mantle, polar rain, and open-field line low-altitude boundary layer (LLBL). When the IMF is strongly duskward/dawnward and weakly southward, the model predicts the occurrence of double cusp near noon: one cusp at lower latitude and one at higher latitude. The lower latitude cusp ions originate from the low-latitude magnetosheath whereas the higher latitude ions originate from the high-latitude magnetosheath. The lower latitude cusp is located in the region of weak azimuthal E × B drift, resulting in a dispersionless cusp. The higher latitude cusp is located in the region of strong azimuthal and poleward E × B drift. Because of a significant poleward drift, the higher latitude cusp dispersion has some resemblance to that of the typical southward IMF cusp. Occasionally, the two parts of the double cusp have such narrow latitudinal separation that they give the appearance of just one cusp with extended latitudinal width. From the 40 DMSP passes selected during periods of large (positive or negative) IMF $ B_{y} $ and small negative IMF $ B_{z} $, 30 (75%) of the passes exhibit double cusps or cusps with extended latitudinal width. The double cusp result is consistent with the following statistical results: (1) the cusp’s latitudinal width increases with |IMF $ B_{y} $| and (2) the cusp’s equatorward boundary moves to lower latitude with increasing |IMF $ B_{y} $|. cusp double magnetopause reconnection Newell, P. T. aut Meng, C.-I. aut Enthalten in Surveys in geophysics Kluwer Academic Publishers, 1986 26(2005), 1-3 vom: Jan., Seite 341-367 (DE-627)129582107 (DE-600)232801-X (DE-576)053589092 0169-3298 nnns volume:26 year:2005 number:1-3 month:01 pages:341-367 https://doi.org/10.1007/s10712-005-1886-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4307 AR 26 2005 1-3 01 341-367 |
allfields_unstemmed |
10.1007/s10712-005-1886-0 doi (DE-627)OLC2034987896 (DE-He213)s10712-005-1886-0-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Wing, S. verfasserin aut Cusp Modeling and Observations at Low Altitude 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2005 Abstract Cusp properties have been investigated with an open-field line particle precipitation model and Defense Meteorological Satellite Program (DMSP) satellite observations. Particular emphasis is placed on the effects of IMF $ B_{y} $, since previous studies focus mostly on IMF $ B_{z} $. The model-data comparisons for various IMF configurations show that the model captures the large-scale features of the particle precipitation very well, not only in the cusp region, but also in other open-field line regions such as the mantle, polar rain, and open-field line low-altitude boundary layer (LLBL). When the IMF is strongly duskward/dawnward and weakly southward, the model predicts the occurrence of double cusp near noon: one cusp at lower latitude and one at higher latitude. The lower latitude cusp ions originate from the low-latitude magnetosheath whereas the higher latitude ions originate from the high-latitude magnetosheath. The lower latitude cusp is located in the region of weak azimuthal E × B drift, resulting in a dispersionless cusp. The higher latitude cusp is located in the region of strong azimuthal and poleward E × B drift. Because of a significant poleward drift, the higher latitude cusp dispersion has some resemblance to that of the typical southward IMF cusp. Occasionally, the two parts of the double cusp have such narrow latitudinal separation that they give the appearance of just one cusp with extended latitudinal width. From the 40 DMSP passes selected during periods of large (positive or negative) IMF $ B_{y} $ and small negative IMF $ B_{z} $, 30 (75%) of the passes exhibit double cusps or cusps with extended latitudinal width. The double cusp result is consistent with the following statistical results: (1) the cusp’s latitudinal width increases with |IMF $ B_{y} $| and (2) the cusp’s equatorward boundary moves to lower latitude with increasing |IMF $ B_{y} $|. cusp double magnetopause reconnection Newell, P. T. aut Meng, C.-I. aut Enthalten in Surveys in geophysics Kluwer Academic Publishers, 1986 26(2005), 1-3 vom: Jan., Seite 341-367 (DE-627)129582107 (DE-600)232801-X (DE-576)053589092 0169-3298 nnns volume:26 year:2005 number:1-3 month:01 pages:341-367 https://doi.org/10.1007/s10712-005-1886-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4307 AR 26 2005 1-3 01 341-367 |
allfieldsGer |
10.1007/s10712-005-1886-0 doi (DE-627)OLC2034987896 (DE-He213)s10712-005-1886-0-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Wing, S. verfasserin aut Cusp Modeling and Observations at Low Altitude 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2005 Abstract Cusp properties have been investigated with an open-field line particle precipitation model and Defense Meteorological Satellite Program (DMSP) satellite observations. Particular emphasis is placed on the effects of IMF $ B_{y} $, since previous studies focus mostly on IMF $ B_{z} $. The model-data comparisons for various IMF configurations show that the model captures the large-scale features of the particle precipitation very well, not only in the cusp region, but also in other open-field line regions such as the mantle, polar rain, and open-field line low-altitude boundary layer (LLBL). When the IMF is strongly duskward/dawnward and weakly southward, the model predicts the occurrence of double cusp near noon: one cusp at lower latitude and one at higher latitude. The lower latitude cusp ions originate from the low-latitude magnetosheath whereas the higher latitude ions originate from the high-latitude magnetosheath. The lower latitude cusp is located in the region of weak azimuthal E × B drift, resulting in a dispersionless cusp. The higher latitude cusp is located in the region of strong azimuthal and poleward E × B drift. Because of a significant poleward drift, the higher latitude cusp dispersion has some resemblance to that of the typical southward IMF cusp. Occasionally, the two parts of the double cusp have such narrow latitudinal separation that they give the appearance of just one cusp with extended latitudinal width. From the 40 DMSP passes selected during periods of large (positive or negative) IMF $ B_{y} $ and small negative IMF $ B_{z} $, 30 (75%) of the passes exhibit double cusps or cusps with extended latitudinal width. The double cusp result is consistent with the following statistical results: (1) the cusp’s latitudinal width increases with |IMF $ B_{y} $| and (2) the cusp’s equatorward boundary moves to lower latitude with increasing |IMF $ B_{y} $|. cusp double magnetopause reconnection Newell, P. T. aut Meng, C.-I. aut Enthalten in Surveys in geophysics Kluwer Academic Publishers, 1986 26(2005), 1-3 vom: Jan., Seite 341-367 (DE-627)129582107 (DE-600)232801-X (DE-576)053589092 0169-3298 nnns volume:26 year:2005 number:1-3 month:01 pages:341-367 https://doi.org/10.1007/s10712-005-1886-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4307 AR 26 2005 1-3 01 341-367 |
allfieldsSound |
10.1007/s10712-005-1886-0 doi (DE-627)OLC2034987896 (DE-He213)s10712-005-1886-0-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Wing, S. verfasserin aut Cusp Modeling and Observations at Low Altitude 2005 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer 2005 Abstract Cusp properties have been investigated with an open-field line particle precipitation model and Defense Meteorological Satellite Program (DMSP) satellite observations. Particular emphasis is placed on the effects of IMF $ B_{y} $, since previous studies focus mostly on IMF $ B_{z} $. The model-data comparisons for various IMF configurations show that the model captures the large-scale features of the particle precipitation very well, not only in the cusp region, but also in other open-field line regions such as the mantle, polar rain, and open-field line low-altitude boundary layer (LLBL). When the IMF is strongly duskward/dawnward and weakly southward, the model predicts the occurrence of double cusp near noon: one cusp at lower latitude and one at higher latitude. The lower latitude cusp ions originate from the low-latitude magnetosheath whereas the higher latitude ions originate from the high-latitude magnetosheath. The lower latitude cusp is located in the region of weak azimuthal E × B drift, resulting in a dispersionless cusp. The higher latitude cusp is located in the region of strong azimuthal and poleward E × B drift. Because of a significant poleward drift, the higher latitude cusp dispersion has some resemblance to that of the typical southward IMF cusp. Occasionally, the two parts of the double cusp have such narrow latitudinal separation that they give the appearance of just one cusp with extended latitudinal width. From the 40 DMSP passes selected during periods of large (positive or negative) IMF $ B_{y} $ and small negative IMF $ B_{z} $, 30 (75%) of the passes exhibit double cusps or cusps with extended latitudinal width. The double cusp result is consistent with the following statistical results: (1) the cusp’s latitudinal width increases with |IMF $ B_{y} $| and (2) the cusp’s equatorward boundary moves to lower latitude with increasing |IMF $ B_{y} $|. cusp double magnetopause reconnection Newell, P. T. aut Meng, C.-I. aut Enthalten in Surveys in geophysics Kluwer Academic Publishers, 1986 26(2005), 1-3 vom: Jan., Seite 341-367 (DE-627)129582107 (DE-600)232801-X (DE-576)053589092 0169-3298 nnns volume:26 year:2005 number:1-3 month:01 pages:341-367 https://doi.org/10.1007/s10712-005-1886-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4307 AR 26 2005 1-3 01 341-367 |
language |
English |
source |
Enthalten in Surveys in geophysics 26(2005), 1-3 vom: Jan., Seite 341-367 volume:26 year:2005 number:1-3 month:01 pages:341-367 |
sourceStr |
Enthalten in Surveys in geophysics 26(2005), 1-3 vom: Jan., Seite 341-367 volume:26 year:2005 number:1-3 month:01 pages:341-367 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
cusp double magnetopause reconnection |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Surveys in geophysics |
authorswithroles_txt_mv |
Wing, S. @@aut@@ Newell, P. T. @@aut@@ Meng, C.-I. @@aut@@ |
publishDateDaySort_date |
2005-01-01T00:00:00Z |
hierarchy_top_id |
129582107 |
dewey-sort |
3550 |
id |
OLC2034987896 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034987896</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503063644.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10712-005-1886-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034987896</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10712-005-1886-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wing, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cusp Modeling and Observations at Low Altitude</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cusp properties have been investigated with an open-field line particle precipitation model and Defense Meteorological Satellite Program (DMSP) satellite observations. Particular emphasis is placed on the effects of IMF $ B_{y} $, since previous studies focus mostly on IMF $ B_{z} $. The model-data comparisons for various IMF configurations show that the model captures the large-scale features of the particle precipitation very well, not only in the cusp region, but also in other open-field line regions such as the mantle, polar rain, and open-field line low-altitude boundary layer (LLBL). When the IMF is strongly duskward/dawnward and weakly southward, the model predicts the occurrence of double cusp near noon: one cusp at lower latitude and one at higher latitude. The lower latitude cusp ions originate from the low-latitude magnetosheath whereas the higher latitude ions originate from the high-latitude magnetosheath. The lower latitude cusp is located in the region of weak azimuthal E × B drift, resulting in a dispersionless cusp. The higher latitude cusp is located in the region of strong azimuthal and poleward E × B drift. Because of a significant poleward drift, the higher latitude cusp dispersion has some resemblance to that of the typical southward IMF cusp. Occasionally, the two parts of the double cusp have such narrow latitudinal separation that they give the appearance of just one cusp with extended latitudinal width. From the 40 DMSP passes selected during periods of large (positive or negative) IMF $ B_{y} $ and small negative IMF $ B_{z} $, 30 (75%) of the passes exhibit double cusps or cusps with extended latitudinal width. The double cusp result is consistent with the following statistical results: (1) the cusp’s latitudinal width increases with |IMF $ B_{y} $| and (2) the cusp’s equatorward boundary moves to lower latitude with increasing |IMF $ B_{y} $|.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cusp</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">double magnetopause</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reconnection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Newell, P. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, C.-I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Surveys in geophysics</subfield><subfield code="d">Kluwer Academic Publishers, 1986</subfield><subfield code="g">26(2005), 1-3 vom: Jan., Seite 341-367</subfield><subfield code="w">(DE-627)129582107</subfield><subfield code="w">(DE-600)232801-X</subfield><subfield code="w">(DE-576)053589092</subfield><subfield code="x">0169-3298</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:1-3</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:341-367</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10712-005-1886-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2005</subfield><subfield code="e">1-3</subfield><subfield code="c">01</subfield><subfield code="h">341-367</subfield></datafield></record></collection>
|
author |
Wing, S. |
spellingShingle |
Wing, S. ddc 550 ssgn 16,13 misc cusp misc double magnetopause misc reconnection Cusp Modeling and Observations at Low Altitude |
authorStr |
Wing, S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129582107 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0169-3298 |
topic_title |
550 VZ 16,13 ssgn Cusp Modeling and Observations at Low Altitude cusp double magnetopause reconnection |
topic |
ddc 550 ssgn 16,13 misc cusp misc double magnetopause misc reconnection |
topic_unstemmed |
ddc 550 ssgn 16,13 misc cusp misc double magnetopause misc reconnection |
topic_browse |
ddc 550 ssgn 16,13 misc cusp misc double magnetopause misc reconnection |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Surveys in geophysics |
hierarchy_parent_id |
129582107 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Surveys in geophysics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129582107 (DE-600)232801-X (DE-576)053589092 |
title |
Cusp Modeling and Observations at Low Altitude |
ctrlnum |
(DE-627)OLC2034987896 (DE-He213)s10712-005-1886-0-p |
title_full |
Cusp Modeling and Observations at Low Altitude |
author_sort |
Wing, S. |
journal |
Surveys in geophysics |
journalStr |
Surveys in geophysics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
container_start_page |
341 |
author_browse |
Wing, S. Newell, P. T. Meng, C.-I. |
container_volume |
26 |
class |
550 VZ 16,13 ssgn |
format_se |
Aufsätze |
author-letter |
Wing, S. |
doi_str_mv |
10.1007/s10712-005-1886-0 |
dewey-full |
550 |
title_sort |
cusp modeling and observations at low altitude |
title_auth |
Cusp Modeling and Observations at Low Altitude |
abstract |
Abstract Cusp properties have been investigated with an open-field line particle precipitation model and Defense Meteorological Satellite Program (DMSP) satellite observations. Particular emphasis is placed on the effects of IMF $ B_{y} $, since previous studies focus mostly on IMF $ B_{z} $. The model-data comparisons for various IMF configurations show that the model captures the large-scale features of the particle precipitation very well, not only in the cusp region, but also in other open-field line regions such as the mantle, polar rain, and open-field line low-altitude boundary layer (LLBL). When the IMF is strongly duskward/dawnward and weakly southward, the model predicts the occurrence of double cusp near noon: one cusp at lower latitude and one at higher latitude. The lower latitude cusp ions originate from the low-latitude magnetosheath whereas the higher latitude ions originate from the high-latitude magnetosheath. The lower latitude cusp is located in the region of weak azimuthal E × B drift, resulting in a dispersionless cusp. The higher latitude cusp is located in the region of strong azimuthal and poleward E × B drift. Because of a significant poleward drift, the higher latitude cusp dispersion has some resemblance to that of the typical southward IMF cusp. Occasionally, the two parts of the double cusp have such narrow latitudinal separation that they give the appearance of just one cusp with extended latitudinal width. From the 40 DMSP passes selected during periods of large (positive or negative) IMF $ B_{y} $ and small negative IMF $ B_{z} $, 30 (75%) of the passes exhibit double cusps or cusps with extended latitudinal width. The double cusp result is consistent with the following statistical results: (1) the cusp’s latitudinal width increases with |IMF $ B_{y} $| and (2) the cusp’s equatorward boundary moves to lower latitude with increasing |IMF $ B_{y} $|. © Springer 2005 |
abstractGer |
Abstract Cusp properties have been investigated with an open-field line particle precipitation model and Defense Meteorological Satellite Program (DMSP) satellite observations. Particular emphasis is placed on the effects of IMF $ B_{y} $, since previous studies focus mostly on IMF $ B_{z} $. The model-data comparisons for various IMF configurations show that the model captures the large-scale features of the particle precipitation very well, not only in the cusp region, but also in other open-field line regions such as the mantle, polar rain, and open-field line low-altitude boundary layer (LLBL). When the IMF is strongly duskward/dawnward and weakly southward, the model predicts the occurrence of double cusp near noon: one cusp at lower latitude and one at higher latitude. The lower latitude cusp ions originate from the low-latitude magnetosheath whereas the higher latitude ions originate from the high-latitude magnetosheath. The lower latitude cusp is located in the region of weak azimuthal E × B drift, resulting in a dispersionless cusp. The higher latitude cusp is located in the region of strong azimuthal and poleward E × B drift. Because of a significant poleward drift, the higher latitude cusp dispersion has some resemblance to that of the typical southward IMF cusp. Occasionally, the two parts of the double cusp have such narrow latitudinal separation that they give the appearance of just one cusp with extended latitudinal width. From the 40 DMSP passes selected during periods of large (positive or negative) IMF $ B_{y} $ and small negative IMF $ B_{z} $, 30 (75%) of the passes exhibit double cusps or cusps with extended latitudinal width. The double cusp result is consistent with the following statistical results: (1) the cusp’s latitudinal width increases with |IMF $ B_{y} $| and (2) the cusp’s equatorward boundary moves to lower latitude with increasing |IMF $ B_{y} $|. © Springer 2005 |
abstract_unstemmed |
Abstract Cusp properties have been investigated with an open-field line particle precipitation model and Defense Meteorological Satellite Program (DMSP) satellite observations. Particular emphasis is placed on the effects of IMF $ B_{y} $, since previous studies focus mostly on IMF $ B_{z} $. The model-data comparisons for various IMF configurations show that the model captures the large-scale features of the particle precipitation very well, not only in the cusp region, but also in other open-field line regions such as the mantle, polar rain, and open-field line low-altitude boundary layer (LLBL). When the IMF is strongly duskward/dawnward and weakly southward, the model predicts the occurrence of double cusp near noon: one cusp at lower latitude and one at higher latitude. The lower latitude cusp ions originate from the low-latitude magnetosheath whereas the higher latitude ions originate from the high-latitude magnetosheath. The lower latitude cusp is located in the region of weak azimuthal E × B drift, resulting in a dispersionless cusp. The higher latitude cusp is located in the region of strong azimuthal and poleward E × B drift. Because of a significant poleward drift, the higher latitude cusp dispersion has some resemblance to that of the typical southward IMF cusp. Occasionally, the two parts of the double cusp have such narrow latitudinal separation that they give the appearance of just one cusp with extended latitudinal width. From the 40 DMSP passes selected during periods of large (positive or negative) IMF $ B_{y} $ and small negative IMF $ B_{z} $, 30 (75%) of the passes exhibit double cusps or cusps with extended latitudinal width. The double cusp result is consistent with the following statistical results: (1) the cusp’s latitudinal width increases with |IMF $ B_{y} $| and (2) the cusp’s equatorward boundary moves to lower latitude with increasing |IMF $ B_{y} $|. © Springer 2005 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-AST GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_47 GBV_ILN_70 GBV_ILN_601 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4307 |
container_issue |
1-3 |
title_short |
Cusp Modeling and Observations at Low Altitude |
url |
https://doi.org/10.1007/s10712-005-1886-0 |
remote_bool |
false |
author2 |
Newell, P. T. Meng, C.-I. |
author2Str |
Newell, P. T. Meng, C.-I. |
ppnlink |
129582107 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10712-005-1886-0 |
up_date |
2024-07-03T23:19:26.083Z |
_version_ |
1803601854946344960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2034987896</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503063644.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2005 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10712-005-1886-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2034987896</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10712-005-1886-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wing, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cusp Modeling and Observations at Low Altitude</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer 2005</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cusp properties have been investigated with an open-field line particle precipitation model and Defense Meteorological Satellite Program (DMSP) satellite observations. Particular emphasis is placed on the effects of IMF $ B_{y} $, since previous studies focus mostly on IMF $ B_{z} $. The model-data comparisons for various IMF configurations show that the model captures the large-scale features of the particle precipitation very well, not only in the cusp region, but also in other open-field line regions such as the mantle, polar rain, and open-field line low-altitude boundary layer (LLBL). When the IMF is strongly duskward/dawnward and weakly southward, the model predicts the occurrence of double cusp near noon: one cusp at lower latitude and one at higher latitude. The lower latitude cusp ions originate from the low-latitude magnetosheath whereas the higher latitude ions originate from the high-latitude magnetosheath. The lower latitude cusp is located in the region of weak azimuthal E × B drift, resulting in a dispersionless cusp. The higher latitude cusp is located in the region of strong azimuthal and poleward E × B drift. Because of a significant poleward drift, the higher latitude cusp dispersion has some resemblance to that of the typical southward IMF cusp. Occasionally, the two parts of the double cusp have such narrow latitudinal separation that they give the appearance of just one cusp with extended latitudinal width. From the 40 DMSP passes selected during periods of large (positive or negative) IMF $ B_{y} $ and small negative IMF $ B_{z} $, 30 (75%) of the passes exhibit double cusps or cusps with extended latitudinal width. The double cusp result is consistent with the following statistical results: (1) the cusp’s latitudinal width increases with |IMF $ B_{y} $| and (2) the cusp’s equatorward boundary moves to lower latitude with increasing |IMF $ B_{y} $|.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cusp</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">double magnetopause</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reconnection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Newell, P. T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, C.-I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Surveys in geophysics</subfield><subfield code="d">Kluwer Academic Publishers, 1986</subfield><subfield code="g">26(2005), 1-3 vom: Jan., Seite 341-367</subfield><subfield code="w">(DE-627)129582107</subfield><subfield code="w">(DE-600)232801-X</subfield><subfield code="w">(DE-576)053589092</subfield><subfield code="x">0169-3298</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:1-3</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:341-367</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10712-005-1886-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2005</subfield><subfield code="e">1-3</subfield><subfield code="c">01</subfield><subfield code="h">341-367</subfield></datafield></record></collection>
|
score |
7.402011 |