Prediction-based realistic 3D model compression
Abstract The benefit of using the geometry image to represent an arbitrary 3D mesh is that the 3D mesh can be re-sampled as a completely regular structure and coded efficiently by common image compression methods. For geometry image-based 3D mesh compression, we need to code the normal-map images wh...
Ausführliche Beschreibung
Autor*in: |
Shi, Yunhui [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Multimedia tools and applications - Springer US, 1995, 70(2012), 3 vom: 11. Sept., Seite 2125-2137 |
---|---|
Übergeordnetes Werk: |
volume:70 ; year:2012 ; number:3 ; day:11 ; month:09 ; pages:2125-2137 |
Links: |
---|
DOI / URN: |
10.1007/s11042-012-1231-9 |
---|
Katalog-ID: |
OLC2035010551 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2035010551 | ||
003 | DE-627 | ||
005 | 20230503192647.0 | ||
007 | tu | ||
008 | 200819s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11042-012-1231-9 |2 doi | |
035 | |a (DE-627)OLC2035010551 | ||
035 | |a (DE-He213)s11042-012-1231-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q VZ |
100 | 1 | |a Shi, Yunhui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Prediction-based realistic 3D model compression |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2012 | ||
520 | |a Abstract The benefit of using the geometry image to represent an arbitrary 3D mesh is that the 3D mesh can be re-sampled as a completely regular structure and coded efficiently by common image compression methods. For geometry image-based 3D mesh compression, we need to code the normal-map images while coding geometry images to improve the subjective quality and realistic effects of the reconstructed model. In traditional methods, a geometry image and a normal-map image are coded independently. However a strong correlation exists between these two kinds of images, because both of them are generated from the same 3D mesh and share the same parameterization. In this paper we propose a predictive coding framework, in which the normal-map image is predicted based on the geometric correlation between them. Additionally we utilize the strong geometric correlation among three components of normal-map image to improve the predicting accuracy. The experimental results show the proposed coding framework improves the coding efficiency of normal-map image, meanwhile the realistic effect of a 3D mesh is significantly enhanced. | ||
650 | 4 | |a Geometry image | |
650 | 4 | |a Normal-map image | |
650 | 4 | |a Geometric correlation | |
650 | 4 | |a Prediction | |
700 | 1 | |a Wen, Bo |4 aut | |
700 | 1 | |a Ding, Wenpeng |4 aut | |
700 | 1 | |a Qi, Na |4 aut | |
700 | 1 | |a Yin, Baocai |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Multimedia tools and applications |d Springer US, 1995 |g 70(2012), 3 vom: 11. Sept., Seite 2125-2137 |w (DE-627)189064145 |w (DE-600)1287642-2 |w (DE-576)052842126 |x 1380-7501 |7 nnns |
773 | 1 | 8 | |g volume:70 |g year:2012 |g number:3 |g day:11 |g month:09 |g pages:2125-2137 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11042-012-1231-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OLC-MKW | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 70 |j 2012 |e 3 |b 11 |c 09 |h 2125-2137 |
author_variant |
y s ys b w bw w d wd n q nq b y by |
---|---|
matchkey_str |
article:13807501:2012----::rdcinaeraitcdoe |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s11042-012-1231-9 doi (DE-627)OLC2035010551 (DE-He213)s11042-012-1231-9-p DE-627 ger DE-627 rakwb eng 070 004 VZ Shi, Yunhui verfasserin aut Prediction-based realistic 3D model compression 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract The benefit of using the geometry image to represent an arbitrary 3D mesh is that the 3D mesh can be re-sampled as a completely regular structure and coded efficiently by common image compression methods. For geometry image-based 3D mesh compression, we need to code the normal-map images while coding geometry images to improve the subjective quality and realistic effects of the reconstructed model. In traditional methods, a geometry image and a normal-map image are coded independently. However a strong correlation exists between these two kinds of images, because both of them are generated from the same 3D mesh and share the same parameterization. In this paper we propose a predictive coding framework, in which the normal-map image is predicted based on the geometric correlation between them. Additionally we utilize the strong geometric correlation among three components of normal-map image to improve the predicting accuracy. The experimental results show the proposed coding framework improves the coding efficiency of normal-map image, meanwhile the realistic effect of a 3D mesh is significantly enhanced. Geometry image Normal-map image Geometric correlation Prediction Wen, Bo aut Ding, Wenpeng aut Qi, Na aut Yin, Baocai aut Enthalten in Multimedia tools and applications Springer US, 1995 70(2012), 3 vom: 11. Sept., Seite 2125-2137 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:70 year:2012 number:3 day:11 month:09 pages:2125-2137 https://doi.org/10.1007/s11042-012-1231-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 70 2012 3 11 09 2125-2137 |
spelling |
10.1007/s11042-012-1231-9 doi (DE-627)OLC2035010551 (DE-He213)s11042-012-1231-9-p DE-627 ger DE-627 rakwb eng 070 004 VZ Shi, Yunhui verfasserin aut Prediction-based realistic 3D model compression 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract The benefit of using the geometry image to represent an arbitrary 3D mesh is that the 3D mesh can be re-sampled as a completely regular structure and coded efficiently by common image compression methods. For geometry image-based 3D mesh compression, we need to code the normal-map images while coding geometry images to improve the subjective quality and realistic effects of the reconstructed model. In traditional methods, a geometry image and a normal-map image are coded independently. However a strong correlation exists between these two kinds of images, because both of them are generated from the same 3D mesh and share the same parameterization. In this paper we propose a predictive coding framework, in which the normal-map image is predicted based on the geometric correlation between them. Additionally we utilize the strong geometric correlation among three components of normal-map image to improve the predicting accuracy. The experimental results show the proposed coding framework improves the coding efficiency of normal-map image, meanwhile the realistic effect of a 3D mesh is significantly enhanced. Geometry image Normal-map image Geometric correlation Prediction Wen, Bo aut Ding, Wenpeng aut Qi, Na aut Yin, Baocai aut Enthalten in Multimedia tools and applications Springer US, 1995 70(2012), 3 vom: 11. Sept., Seite 2125-2137 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:70 year:2012 number:3 day:11 month:09 pages:2125-2137 https://doi.org/10.1007/s11042-012-1231-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 70 2012 3 11 09 2125-2137 |
allfields_unstemmed |
10.1007/s11042-012-1231-9 doi (DE-627)OLC2035010551 (DE-He213)s11042-012-1231-9-p DE-627 ger DE-627 rakwb eng 070 004 VZ Shi, Yunhui verfasserin aut Prediction-based realistic 3D model compression 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract The benefit of using the geometry image to represent an arbitrary 3D mesh is that the 3D mesh can be re-sampled as a completely regular structure and coded efficiently by common image compression methods. For geometry image-based 3D mesh compression, we need to code the normal-map images while coding geometry images to improve the subjective quality and realistic effects of the reconstructed model. In traditional methods, a geometry image and a normal-map image are coded independently. However a strong correlation exists between these two kinds of images, because both of them are generated from the same 3D mesh and share the same parameterization. In this paper we propose a predictive coding framework, in which the normal-map image is predicted based on the geometric correlation between them. Additionally we utilize the strong geometric correlation among three components of normal-map image to improve the predicting accuracy. The experimental results show the proposed coding framework improves the coding efficiency of normal-map image, meanwhile the realistic effect of a 3D mesh is significantly enhanced. Geometry image Normal-map image Geometric correlation Prediction Wen, Bo aut Ding, Wenpeng aut Qi, Na aut Yin, Baocai aut Enthalten in Multimedia tools and applications Springer US, 1995 70(2012), 3 vom: 11. Sept., Seite 2125-2137 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:70 year:2012 number:3 day:11 month:09 pages:2125-2137 https://doi.org/10.1007/s11042-012-1231-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 70 2012 3 11 09 2125-2137 |
allfieldsGer |
10.1007/s11042-012-1231-9 doi (DE-627)OLC2035010551 (DE-He213)s11042-012-1231-9-p DE-627 ger DE-627 rakwb eng 070 004 VZ Shi, Yunhui verfasserin aut Prediction-based realistic 3D model compression 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract The benefit of using the geometry image to represent an arbitrary 3D mesh is that the 3D mesh can be re-sampled as a completely regular structure and coded efficiently by common image compression methods. For geometry image-based 3D mesh compression, we need to code the normal-map images while coding geometry images to improve the subjective quality and realistic effects of the reconstructed model. In traditional methods, a geometry image and a normal-map image are coded independently. However a strong correlation exists between these two kinds of images, because both of them are generated from the same 3D mesh and share the same parameterization. In this paper we propose a predictive coding framework, in which the normal-map image is predicted based on the geometric correlation between them. Additionally we utilize the strong geometric correlation among three components of normal-map image to improve the predicting accuracy. The experimental results show the proposed coding framework improves the coding efficiency of normal-map image, meanwhile the realistic effect of a 3D mesh is significantly enhanced. Geometry image Normal-map image Geometric correlation Prediction Wen, Bo aut Ding, Wenpeng aut Qi, Na aut Yin, Baocai aut Enthalten in Multimedia tools and applications Springer US, 1995 70(2012), 3 vom: 11. Sept., Seite 2125-2137 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:70 year:2012 number:3 day:11 month:09 pages:2125-2137 https://doi.org/10.1007/s11042-012-1231-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 70 2012 3 11 09 2125-2137 |
allfieldsSound |
10.1007/s11042-012-1231-9 doi (DE-627)OLC2035010551 (DE-He213)s11042-012-1231-9-p DE-627 ger DE-627 rakwb eng 070 004 VZ Shi, Yunhui verfasserin aut Prediction-based realistic 3D model compression 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2012 Abstract The benefit of using the geometry image to represent an arbitrary 3D mesh is that the 3D mesh can be re-sampled as a completely regular structure and coded efficiently by common image compression methods. For geometry image-based 3D mesh compression, we need to code the normal-map images while coding geometry images to improve the subjective quality and realistic effects of the reconstructed model. In traditional methods, a geometry image and a normal-map image are coded independently. However a strong correlation exists between these two kinds of images, because both of them are generated from the same 3D mesh and share the same parameterization. In this paper we propose a predictive coding framework, in which the normal-map image is predicted based on the geometric correlation between them. Additionally we utilize the strong geometric correlation among three components of normal-map image to improve the predicting accuracy. The experimental results show the proposed coding framework improves the coding efficiency of normal-map image, meanwhile the realistic effect of a 3D mesh is significantly enhanced. Geometry image Normal-map image Geometric correlation Prediction Wen, Bo aut Ding, Wenpeng aut Qi, Na aut Yin, Baocai aut Enthalten in Multimedia tools and applications Springer US, 1995 70(2012), 3 vom: 11. Sept., Seite 2125-2137 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:70 year:2012 number:3 day:11 month:09 pages:2125-2137 https://doi.org/10.1007/s11042-012-1231-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 70 2012 3 11 09 2125-2137 |
language |
English |
source |
Enthalten in Multimedia tools and applications 70(2012), 3 vom: 11. Sept., Seite 2125-2137 volume:70 year:2012 number:3 day:11 month:09 pages:2125-2137 |
sourceStr |
Enthalten in Multimedia tools and applications 70(2012), 3 vom: 11. Sept., Seite 2125-2137 volume:70 year:2012 number:3 day:11 month:09 pages:2125-2137 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Geometry image Normal-map image Geometric correlation Prediction |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Multimedia tools and applications |
authorswithroles_txt_mv |
Shi, Yunhui @@aut@@ Wen, Bo @@aut@@ Ding, Wenpeng @@aut@@ Qi, Na @@aut@@ Yin, Baocai @@aut@@ |
publishDateDaySort_date |
2012-09-11T00:00:00Z |
hierarchy_top_id |
189064145 |
dewey-sort |
270 |
id |
OLC2035010551 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2035010551</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503192647.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-012-1231-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2035010551</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-012-1231-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Yunhui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction-based realistic 3D model compression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The benefit of using the geometry image to represent an arbitrary 3D mesh is that the 3D mesh can be re-sampled as a completely regular structure and coded efficiently by common image compression methods. For geometry image-based 3D mesh compression, we need to code the normal-map images while coding geometry images to improve the subjective quality and realistic effects of the reconstructed model. In traditional methods, a geometry image and a normal-map image are coded independently. However a strong correlation exists between these two kinds of images, because both of them are generated from the same 3D mesh and share the same parameterization. In this paper we propose a predictive coding framework, in which the normal-map image is predicted based on the geometric correlation between them. Additionally we utilize the strong geometric correlation among three components of normal-map image to improve the predicting accuracy. The experimental results show the proposed coding framework improves the coding efficiency of normal-map image, meanwhile the realistic effect of a 3D mesh is significantly enhanced.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normal-map image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric correlation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wen, Bo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Wenpeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Na</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Baocai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">70(2012), 3 vom: 11. Sept., Seite 2125-2137</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3</subfield><subfield code="g">day:11</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:2125-2137</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-012-1231-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2012</subfield><subfield code="e">3</subfield><subfield code="b">11</subfield><subfield code="c">09</subfield><subfield code="h">2125-2137</subfield></datafield></record></collection>
|
author |
Shi, Yunhui |
spellingShingle |
Shi, Yunhui ddc 070 misc Geometry image misc Normal-map image misc Geometric correlation misc Prediction Prediction-based realistic 3D model compression |
authorStr |
Shi, Yunhui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)189064145 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1380-7501 |
topic_title |
070 004 VZ Prediction-based realistic 3D model compression Geometry image Normal-map image Geometric correlation Prediction |
topic |
ddc 070 misc Geometry image misc Normal-map image misc Geometric correlation misc Prediction |
topic_unstemmed |
ddc 070 misc Geometry image misc Normal-map image misc Geometric correlation misc Prediction |
topic_browse |
ddc 070 misc Geometry image misc Normal-map image misc Geometric correlation misc Prediction |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Multimedia tools and applications |
hierarchy_parent_id |
189064145 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Multimedia tools and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 |
title |
Prediction-based realistic 3D model compression |
ctrlnum |
(DE-627)OLC2035010551 (DE-He213)s11042-012-1231-9-p |
title_full |
Prediction-based realistic 3D model compression |
author_sort |
Shi, Yunhui |
journal |
Multimedia tools and applications |
journalStr |
Multimedia tools and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
2125 |
author_browse |
Shi, Yunhui Wen, Bo Ding, Wenpeng Qi, Na Yin, Baocai |
container_volume |
70 |
class |
070 004 VZ |
format_se |
Aufsätze |
author-letter |
Shi, Yunhui |
doi_str_mv |
10.1007/s11042-012-1231-9 |
dewey-full |
070 004 |
title_sort |
prediction-based realistic 3d model compression |
title_auth |
Prediction-based realistic 3D model compression |
abstract |
Abstract The benefit of using the geometry image to represent an arbitrary 3D mesh is that the 3D mesh can be re-sampled as a completely regular structure and coded efficiently by common image compression methods. For geometry image-based 3D mesh compression, we need to code the normal-map images while coding geometry images to improve the subjective quality and realistic effects of the reconstructed model. In traditional methods, a geometry image and a normal-map image are coded independently. However a strong correlation exists between these two kinds of images, because both of them are generated from the same 3D mesh and share the same parameterization. In this paper we propose a predictive coding framework, in which the normal-map image is predicted based on the geometric correlation between them. Additionally we utilize the strong geometric correlation among three components of normal-map image to improve the predicting accuracy. The experimental results show the proposed coding framework improves the coding efficiency of normal-map image, meanwhile the realistic effect of a 3D mesh is significantly enhanced. © Springer Science+Business Media, LLC 2012 |
abstractGer |
Abstract The benefit of using the geometry image to represent an arbitrary 3D mesh is that the 3D mesh can be re-sampled as a completely regular structure and coded efficiently by common image compression methods. For geometry image-based 3D mesh compression, we need to code the normal-map images while coding geometry images to improve the subjective quality and realistic effects of the reconstructed model. In traditional methods, a geometry image and a normal-map image are coded independently. However a strong correlation exists between these two kinds of images, because both of them are generated from the same 3D mesh and share the same parameterization. In this paper we propose a predictive coding framework, in which the normal-map image is predicted based on the geometric correlation between them. Additionally we utilize the strong geometric correlation among three components of normal-map image to improve the predicting accuracy. The experimental results show the proposed coding framework improves the coding efficiency of normal-map image, meanwhile the realistic effect of a 3D mesh is significantly enhanced. © Springer Science+Business Media, LLC 2012 |
abstract_unstemmed |
Abstract The benefit of using the geometry image to represent an arbitrary 3D mesh is that the 3D mesh can be re-sampled as a completely regular structure and coded efficiently by common image compression methods. For geometry image-based 3D mesh compression, we need to code the normal-map images while coding geometry images to improve the subjective quality and realistic effects of the reconstructed model. In traditional methods, a geometry image and a normal-map image are coded independently. However a strong correlation exists between these two kinds of images, because both of them are generated from the same 3D mesh and share the same parameterization. In this paper we propose a predictive coding framework, in which the normal-map image is predicted based on the geometric correlation between them. Additionally we utilize the strong geometric correlation among three components of normal-map image to improve the predicting accuracy. The experimental results show the proposed coding framework improves the coding efficiency of normal-map image, meanwhile the realistic effect of a 3D mesh is significantly enhanced. © Springer Science+Business Media, LLC 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 |
container_issue |
3 |
title_short |
Prediction-based realistic 3D model compression |
url |
https://doi.org/10.1007/s11042-012-1231-9 |
remote_bool |
false |
author2 |
Wen, Bo Ding, Wenpeng Qi, Na Yin, Baocai |
author2Str |
Wen, Bo Ding, Wenpeng Qi, Na Yin, Baocai |
ppnlink |
189064145 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11042-012-1231-9 |
up_date |
2024-07-03T23:25:24.210Z |
_version_ |
1803602230472867840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2035010551</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503192647.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-012-1231-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2035010551</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-012-1231-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Yunhui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prediction-based realistic 3D model compression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The benefit of using the geometry image to represent an arbitrary 3D mesh is that the 3D mesh can be re-sampled as a completely regular structure and coded efficiently by common image compression methods. For geometry image-based 3D mesh compression, we need to code the normal-map images while coding geometry images to improve the subjective quality and realistic effects of the reconstructed model. In traditional methods, a geometry image and a normal-map image are coded independently. However a strong correlation exists between these two kinds of images, because both of them are generated from the same 3D mesh and share the same parameterization. In this paper we propose a predictive coding framework, in which the normal-map image is predicted based on the geometric correlation between them. Additionally we utilize the strong geometric correlation among three components of normal-map image to improve the predicting accuracy. The experimental results show the proposed coding framework improves the coding efficiency of normal-map image, meanwhile the realistic effect of a 3D mesh is significantly enhanced.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Normal-map image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric correlation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wen, Bo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Wenpeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Na</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Baocai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">70(2012), 3 vom: 11. Sept., Seite 2125-2137</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:3</subfield><subfield code="g">day:11</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:2125-2137</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-012-1231-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2012</subfield><subfield code="e">3</subfield><subfield code="b">11</subfield><subfield code="c">09</subfield><subfield code="h">2125-2137</subfield></datafield></record></collection>
|
score |
7.3993254 |