Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming
Abstract Recently, several interesting computational intelligence based image denoising techniques have been reported for the removal of either salt & pepper or uniform impulse noise. However, to the best of our knowledge, the difficult challenge of developing a multi denoising method that can r...
Ausführliche Beschreibung
Autor*in: |
Javed, Syed Gibran [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Multimedia tools and applications - Springer US, 1995, 75(2015), 10 vom: 30. Apr., Seite 5887-5916 |
---|---|
Übergeordnetes Werk: |
volume:75 ; year:2015 ; number:10 ; day:30 ; month:04 ; pages:5887-5916 |
Links: |
---|
DOI / URN: |
10.1007/s11042-015-2554-0 |
---|
Katalog-ID: |
OLC2035022797 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2035022797 | ||
003 | DE-627 | ||
005 | 20230503192834.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11042-015-2554-0 |2 doi | |
035 | |a (DE-627)OLC2035022797 | ||
035 | |a (DE-He213)s11042-015-2554-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q VZ |
100 | 1 | |a Javed, Syed Gibran |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2015 | ||
520 | |a Abstract Recently, several interesting computational intelligence based image denoising techniques have been reported for the removal of either salt & pepper or uniform impulse noise. However, to the best of our knowledge, the difficult challenge of developing a multi denoising method that can remove mixed-impulse noise, uniform impulse, salt & pepper, and impulse-burst noise, has not been reported so far. In this regard, we propose a new noise removal approach called INDE-GP for the removal of multi types of impulse noises. The proposed approach consists of two stages: noise detection stage and removal stage. At first, the impulse noise is localized by a single stage GP detector that exploits various information-rich, rank-ordered and robust statistical features for detection. Next the noise is removed only from the detected noisy pixels by single stage GP estimator. This estimator is developed by exploiting the global learning capability of GP and local statistical measures of noise-free pixels present in the neighborhood of noisy pixels. The experimental results and comparative analysis with existing denoising techniques show that multi denoising performance of the proposed INDE-GP approach is better both quantitative and qualitative ways. | ||
650 | 4 | |a Image denoising | |
650 | 4 | |a Genetic programming | |
650 | 4 | |a Noise detection | |
650 | 4 | |a Mixed impulse noise | |
650 | 4 | |a Salt & pepper noise | |
650 | 4 | |a Impulse burst noise | |
650 | 4 | |a Statistical features | |
650 | 4 | |a Robust outlyingness ratio | |
700 | 1 | |a Majid, Abdul |4 aut | |
700 | 1 | |a Mirza, Anwar M. |4 aut | |
700 | 1 | |a Khan, Asifullah |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Multimedia tools and applications |d Springer US, 1995 |g 75(2015), 10 vom: 30. Apr., Seite 5887-5916 |w (DE-627)189064145 |w (DE-600)1287642-2 |w (DE-576)052842126 |x 1380-7501 |7 nnns |
773 | 1 | 8 | |g volume:75 |g year:2015 |g number:10 |g day:30 |g month:04 |g pages:5887-5916 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11042-015-2554-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OLC-MKW | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 75 |j 2015 |e 10 |b 30 |c 04 |h 5887-5916 |
author_variant |
s g j sg sgj a m am a m m am amm a k ak |
---|---|
matchkey_str |
article:13807501:2015----::utdniigaeipleosrmvlrmmgssnrbssaitcle |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s11042-015-2554-0 doi (DE-627)OLC2035022797 (DE-He213)s11042-015-2554-0-p DE-627 ger DE-627 rakwb eng 070 004 VZ Javed, Syed Gibran verfasserin aut Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Recently, several interesting computational intelligence based image denoising techniques have been reported for the removal of either salt & pepper or uniform impulse noise. However, to the best of our knowledge, the difficult challenge of developing a multi denoising method that can remove mixed-impulse noise, uniform impulse, salt & pepper, and impulse-burst noise, has not been reported so far. In this regard, we propose a new noise removal approach called INDE-GP for the removal of multi types of impulse noises. The proposed approach consists of two stages: noise detection stage and removal stage. At first, the impulse noise is localized by a single stage GP detector that exploits various information-rich, rank-ordered and robust statistical features for detection. Next the noise is removed only from the detected noisy pixels by single stage GP estimator. This estimator is developed by exploiting the global learning capability of GP and local statistical measures of noise-free pixels present in the neighborhood of noisy pixels. The experimental results and comparative analysis with existing denoising techniques show that multi denoising performance of the proposed INDE-GP approach is better both quantitative and qualitative ways. Image denoising Genetic programming Noise detection Mixed impulse noise Salt & pepper noise Impulse burst noise Statistical features Robust outlyingness ratio Majid, Abdul aut Mirza, Anwar M. aut Khan, Asifullah aut Enthalten in Multimedia tools and applications Springer US, 1995 75(2015), 10 vom: 30. Apr., Seite 5887-5916 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:75 year:2015 number:10 day:30 month:04 pages:5887-5916 https://doi.org/10.1007/s11042-015-2554-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 75 2015 10 30 04 5887-5916 |
spelling |
10.1007/s11042-015-2554-0 doi (DE-627)OLC2035022797 (DE-He213)s11042-015-2554-0-p DE-627 ger DE-627 rakwb eng 070 004 VZ Javed, Syed Gibran verfasserin aut Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Recently, several interesting computational intelligence based image denoising techniques have been reported for the removal of either salt & pepper or uniform impulse noise. However, to the best of our knowledge, the difficult challenge of developing a multi denoising method that can remove mixed-impulse noise, uniform impulse, salt & pepper, and impulse-burst noise, has not been reported so far. In this regard, we propose a new noise removal approach called INDE-GP for the removal of multi types of impulse noises. The proposed approach consists of two stages: noise detection stage and removal stage. At first, the impulse noise is localized by a single stage GP detector that exploits various information-rich, rank-ordered and robust statistical features for detection. Next the noise is removed only from the detected noisy pixels by single stage GP estimator. This estimator is developed by exploiting the global learning capability of GP and local statistical measures of noise-free pixels present in the neighborhood of noisy pixels. The experimental results and comparative analysis with existing denoising techniques show that multi denoising performance of the proposed INDE-GP approach is better both quantitative and qualitative ways. Image denoising Genetic programming Noise detection Mixed impulse noise Salt & pepper noise Impulse burst noise Statistical features Robust outlyingness ratio Majid, Abdul aut Mirza, Anwar M. aut Khan, Asifullah aut Enthalten in Multimedia tools and applications Springer US, 1995 75(2015), 10 vom: 30. Apr., Seite 5887-5916 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:75 year:2015 number:10 day:30 month:04 pages:5887-5916 https://doi.org/10.1007/s11042-015-2554-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 75 2015 10 30 04 5887-5916 |
allfields_unstemmed |
10.1007/s11042-015-2554-0 doi (DE-627)OLC2035022797 (DE-He213)s11042-015-2554-0-p DE-627 ger DE-627 rakwb eng 070 004 VZ Javed, Syed Gibran verfasserin aut Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Recently, several interesting computational intelligence based image denoising techniques have been reported for the removal of either salt & pepper or uniform impulse noise. However, to the best of our knowledge, the difficult challenge of developing a multi denoising method that can remove mixed-impulse noise, uniform impulse, salt & pepper, and impulse-burst noise, has not been reported so far. In this regard, we propose a new noise removal approach called INDE-GP for the removal of multi types of impulse noises. The proposed approach consists of two stages: noise detection stage and removal stage. At first, the impulse noise is localized by a single stage GP detector that exploits various information-rich, rank-ordered and robust statistical features for detection. Next the noise is removed only from the detected noisy pixels by single stage GP estimator. This estimator is developed by exploiting the global learning capability of GP and local statistical measures of noise-free pixels present in the neighborhood of noisy pixels. The experimental results and comparative analysis with existing denoising techniques show that multi denoising performance of the proposed INDE-GP approach is better both quantitative and qualitative ways. Image denoising Genetic programming Noise detection Mixed impulse noise Salt & pepper noise Impulse burst noise Statistical features Robust outlyingness ratio Majid, Abdul aut Mirza, Anwar M. aut Khan, Asifullah aut Enthalten in Multimedia tools and applications Springer US, 1995 75(2015), 10 vom: 30. Apr., Seite 5887-5916 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:75 year:2015 number:10 day:30 month:04 pages:5887-5916 https://doi.org/10.1007/s11042-015-2554-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 75 2015 10 30 04 5887-5916 |
allfieldsGer |
10.1007/s11042-015-2554-0 doi (DE-627)OLC2035022797 (DE-He213)s11042-015-2554-0-p DE-627 ger DE-627 rakwb eng 070 004 VZ Javed, Syed Gibran verfasserin aut Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Recently, several interesting computational intelligence based image denoising techniques have been reported for the removal of either salt & pepper or uniform impulse noise. However, to the best of our knowledge, the difficult challenge of developing a multi denoising method that can remove mixed-impulse noise, uniform impulse, salt & pepper, and impulse-burst noise, has not been reported so far. In this regard, we propose a new noise removal approach called INDE-GP for the removal of multi types of impulse noises. The proposed approach consists of two stages: noise detection stage and removal stage. At first, the impulse noise is localized by a single stage GP detector that exploits various information-rich, rank-ordered and robust statistical features for detection. Next the noise is removed only from the detected noisy pixels by single stage GP estimator. This estimator is developed by exploiting the global learning capability of GP and local statistical measures of noise-free pixels present in the neighborhood of noisy pixels. The experimental results and comparative analysis with existing denoising techniques show that multi denoising performance of the proposed INDE-GP approach is better both quantitative and qualitative ways. Image denoising Genetic programming Noise detection Mixed impulse noise Salt & pepper noise Impulse burst noise Statistical features Robust outlyingness ratio Majid, Abdul aut Mirza, Anwar M. aut Khan, Asifullah aut Enthalten in Multimedia tools and applications Springer US, 1995 75(2015), 10 vom: 30. Apr., Seite 5887-5916 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:75 year:2015 number:10 day:30 month:04 pages:5887-5916 https://doi.org/10.1007/s11042-015-2554-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 75 2015 10 30 04 5887-5916 |
allfieldsSound |
10.1007/s11042-015-2554-0 doi (DE-627)OLC2035022797 (DE-He213)s11042-015-2554-0-p DE-627 ger DE-627 rakwb eng 070 004 VZ Javed, Syed Gibran verfasserin aut Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Recently, several interesting computational intelligence based image denoising techniques have been reported for the removal of either salt & pepper or uniform impulse noise. However, to the best of our knowledge, the difficult challenge of developing a multi denoising method that can remove mixed-impulse noise, uniform impulse, salt & pepper, and impulse-burst noise, has not been reported so far. In this regard, we propose a new noise removal approach called INDE-GP for the removal of multi types of impulse noises. The proposed approach consists of two stages: noise detection stage and removal stage. At first, the impulse noise is localized by a single stage GP detector that exploits various information-rich, rank-ordered and robust statistical features for detection. Next the noise is removed only from the detected noisy pixels by single stage GP estimator. This estimator is developed by exploiting the global learning capability of GP and local statistical measures of noise-free pixels present in the neighborhood of noisy pixels. The experimental results and comparative analysis with existing denoising techniques show that multi denoising performance of the proposed INDE-GP approach is better both quantitative and qualitative ways. Image denoising Genetic programming Noise detection Mixed impulse noise Salt & pepper noise Impulse burst noise Statistical features Robust outlyingness ratio Majid, Abdul aut Mirza, Anwar M. aut Khan, Asifullah aut Enthalten in Multimedia tools and applications Springer US, 1995 75(2015), 10 vom: 30. Apr., Seite 5887-5916 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:75 year:2015 number:10 day:30 month:04 pages:5887-5916 https://doi.org/10.1007/s11042-015-2554-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 75 2015 10 30 04 5887-5916 |
language |
English |
source |
Enthalten in Multimedia tools and applications 75(2015), 10 vom: 30. Apr., Seite 5887-5916 volume:75 year:2015 number:10 day:30 month:04 pages:5887-5916 |
sourceStr |
Enthalten in Multimedia tools and applications 75(2015), 10 vom: 30. Apr., Seite 5887-5916 volume:75 year:2015 number:10 day:30 month:04 pages:5887-5916 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Image denoising Genetic programming Noise detection Mixed impulse noise Salt & pepper noise Impulse burst noise Statistical features Robust outlyingness ratio |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Multimedia tools and applications |
authorswithroles_txt_mv |
Javed, Syed Gibran @@aut@@ Majid, Abdul @@aut@@ Mirza, Anwar M. @@aut@@ Khan, Asifullah @@aut@@ |
publishDateDaySort_date |
2015-04-30T00:00:00Z |
hierarchy_top_id |
189064145 |
dewey-sort |
270 |
id |
OLC2035022797 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2035022797</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503192834.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-015-2554-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2035022797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-015-2554-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Javed, Syed Gibran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Recently, several interesting computational intelligence based image denoising techniques have been reported for the removal of either salt & pepper or uniform impulse noise. However, to the best of our knowledge, the difficult challenge of developing a multi denoising method that can remove mixed-impulse noise, uniform impulse, salt & pepper, and impulse-burst noise, has not been reported so far. In this regard, we propose a new noise removal approach called INDE-GP for the removal of multi types of impulse noises. The proposed approach consists of two stages: noise detection stage and removal stage. At first, the impulse noise is localized by a single stage GP detector that exploits various information-rich, rank-ordered and robust statistical features for detection. Next the noise is removed only from the detected noisy pixels by single stage GP estimator. This estimator is developed by exploiting the global learning capability of GP and local statistical measures of noise-free pixels present in the neighborhood of noisy pixels. The experimental results and comparative analysis with existing denoising techniques show that multi denoising performance of the proposed INDE-GP approach is better both quantitative and qualitative ways.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image denoising</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed impulse noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salt & pepper noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impulse burst noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical features</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robust outlyingness ratio</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Majid, Abdul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirza, Anwar M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Asifullah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">75(2015), 10 vom: 30. Apr., Seite 5887-5916</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:10</subfield><subfield code="g">day:30</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:5887-5916</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-015-2554-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2015</subfield><subfield code="e">10</subfield><subfield code="b">30</subfield><subfield code="c">04</subfield><subfield code="h">5887-5916</subfield></datafield></record></collection>
|
author |
Javed, Syed Gibran |
spellingShingle |
Javed, Syed Gibran ddc 070 misc Image denoising misc Genetic programming misc Noise detection misc Mixed impulse noise misc Salt & pepper noise misc Impulse burst noise misc Statistical features misc Robust outlyingness ratio Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming |
authorStr |
Javed, Syed Gibran |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)189064145 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1380-7501 |
topic_title |
070 004 VZ Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming Image denoising Genetic programming Noise detection Mixed impulse noise Salt & pepper noise Impulse burst noise Statistical features Robust outlyingness ratio |
topic |
ddc 070 misc Image denoising misc Genetic programming misc Noise detection misc Mixed impulse noise misc Salt & pepper noise misc Impulse burst noise misc Statistical features misc Robust outlyingness ratio |
topic_unstemmed |
ddc 070 misc Image denoising misc Genetic programming misc Noise detection misc Mixed impulse noise misc Salt & pepper noise misc Impulse burst noise misc Statistical features misc Robust outlyingness ratio |
topic_browse |
ddc 070 misc Image denoising misc Genetic programming misc Noise detection misc Mixed impulse noise misc Salt & pepper noise misc Impulse burst noise misc Statistical features misc Robust outlyingness ratio |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Multimedia tools and applications |
hierarchy_parent_id |
189064145 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Multimedia tools and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 |
title |
Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming |
ctrlnum |
(DE-627)OLC2035022797 (DE-He213)s11042-015-2554-0-p |
title_full |
Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming |
author_sort |
Javed, Syed Gibran |
journal |
Multimedia tools and applications |
journalStr |
Multimedia tools and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
5887 |
author_browse |
Javed, Syed Gibran Majid, Abdul Mirza, Anwar M. Khan, Asifullah |
container_volume |
75 |
class |
070 004 VZ |
format_se |
Aufsätze |
author-letter |
Javed, Syed Gibran |
doi_str_mv |
10.1007/s11042-015-2554-0 |
dewey-full |
070 004 |
title_sort |
multi-denoising based impulse noise removal from images using robust statistical features and genetic programming |
title_auth |
Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming |
abstract |
Abstract Recently, several interesting computational intelligence based image denoising techniques have been reported for the removal of either salt & pepper or uniform impulse noise. However, to the best of our knowledge, the difficult challenge of developing a multi denoising method that can remove mixed-impulse noise, uniform impulse, salt & pepper, and impulse-burst noise, has not been reported so far. In this regard, we propose a new noise removal approach called INDE-GP for the removal of multi types of impulse noises. The proposed approach consists of two stages: noise detection stage and removal stage. At first, the impulse noise is localized by a single stage GP detector that exploits various information-rich, rank-ordered and robust statistical features for detection. Next the noise is removed only from the detected noisy pixels by single stage GP estimator. This estimator is developed by exploiting the global learning capability of GP and local statistical measures of noise-free pixels present in the neighborhood of noisy pixels. The experimental results and comparative analysis with existing denoising techniques show that multi denoising performance of the proposed INDE-GP approach is better both quantitative and qualitative ways. © Springer Science+Business Media New York 2015 |
abstractGer |
Abstract Recently, several interesting computational intelligence based image denoising techniques have been reported for the removal of either salt & pepper or uniform impulse noise. However, to the best of our knowledge, the difficult challenge of developing a multi denoising method that can remove mixed-impulse noise, uniform impulse, salt & pepper, and impulse-burst noise, has not been reported so far. In this regard, we propose a new noise removal approach called INDE-GP for the removal of multi types of impulse noises. The proposed approach consists of two stages: noise detection stage and removal stage. At first, the impulse noise is localized by a single stage GP detector that exploits various information-rich, rank-ordered and robust statistical features for detection. Next the noise is removed only from the detected noisy pixels by single stage GP estimator. This estimator is developed by exploiting the global learning capability of GP and local statistical measures of noise-free pixels present in the neighborhood of noisy pixels. The experimental results and comparative analysis with existing denoising techniques show that multi denoising performance of the proposed INDE-GP approach is better both quantitative and qualitative ways. © Springer Science+Business Media New York 2015 |
abstract_unstemmed |
Abstract Recently, several interesting computational intelligence based image denoising techniques have been reported for the removal of either salt & pepper or uniform impulse noise. However, to the best of our knowledge, the difficult challenge of developing a multi denoising method that can remove mixed-impulse noise, uniform impulse, salt & pepper, and impulse-burst noise, has not been reported so far. In this regard, we propose a new noise removal approach called INDE-GP for the removal of multi types of impulse noises. The proposed approach consists of two stages: noise detection stage and removal stage. At first, the impulse noise is localized by a single stage GP detector that exploits various information-rich, rank-ordered and robust statistical features for detection. Next the noise is removed only from the detected noisy pixels by single stage GP estimator. This estimator is developed by exploiting the global learning capability of GP and local statistical measures of noise-free pixels present in the neighborhood of noisy pixels. The experimental results and comparative analysis with existing denoising techniques show that multi denoising performance of the proposed INDE-GP approach is better both quantitative and qualitative ways. © Springer Science+Business Media New York 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 |
container_issue |
10 |
title_short |
Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming |
url |
https://doi.org/10.1007/s11042-015-2554-0 |
remote_bool |
false |
author2 |
Majid, Abdul Mirza, Anwar M. Khan, Asifullah |
author2Str |
Majid, Abdul Mirza, Anwar M. Khan, Asifullah |
ppnlink |
189064145 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11042-015-2554-0 |
up_date |
2024-07-03T23:28:43.083Z |
_version_ |
1803602439002128384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2035022797</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503192834.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-015-2554-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2035022797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-015-2554-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Javed, Syed Gibran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-denoising based impulse noise removal from images using robust statistical features and genetic programming</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Recently, several interesting computational intelligence based image denoising techniques have been reported for the removal of either salt & pepper or uniform impulse noise. However, to the best of our knowledge, the difficult challenge of developing a multi denoising method that can remove mixed-impulse noise, uniform impulse, salt & pepper, and impulse-burst noise, has not been reported so far. In this regard, we propose a new noise removal approach called INDE-GP for the removal of multi types of impulse noises. The proposed approach consists of two stages: noise detection stage and removal stage. At first, the impulse noise is localized by a single stage GP detector that exploits various information-rich, rank-ordered and robust statistical features for detection. Next the noise is removed only from the detected noisy pixels by single stage GP estimator. This estimator is developed by exploiting the global learning capability of GP and local statistical measures of noise-free pixels present in the neighborhood of noisy pixels. The experimental results and comparative analysis with existing denoising techniques show that multi denoising performance of the proposed INDE-GP approach is better both quantitative and qualitative ways.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image denoising</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed impulse noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salt & pepper noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impulse burst noise</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical features</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robust outlyingness ratio</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Majid, Abdul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirza, Anwar M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Asifullah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">75(2015), 10 vom: 30. Apr., Seite 5887-5916</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:10</subfield><subfield code="g">day:30</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:5887-5916</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-015-2554-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2015</subfield><subfield code="e">10</subfield><subfield code="b">30</subfield><subfield code="c">04</subfield><subfield code="h">5887-5916</subfield></datafield></record></collection>
|
score |
7.4019384 |