Video saliency detection using 3D shearlet transform
Abstract Recently, visual saliency detection has received great interest. As most video saliency detection models are based on spatiotemporal mechanism, we firstly give a simple introduction of it in this paper. After discussing issues to be addressed, we present a novel framework for video saliency...
Ausführliche Beschreibung
Autor*in: |
Bao, Lei [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Multimedia tools and applications - Springer US, 1995, 75(2015), 13 vom: 23. Juni, Seite 7761-7778 |
---|---|
Übergeordnetes Werk: |
volume:75 ; year:2015 ; number:13 ; day:23 ; month:06 ; pages:7761-7778 |
Links: |
---|
DOI / URN: |
10.1007/s11042-015-2692-4 |
---|
Katalog-ID: |
OLC2035023831 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2035023831 | ||
003 | DE-627 | ||
005 | 20230503192842.0 | ||
007 | tu | ||
008 | 200819s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11042-015-2692-4 |2 doi | |
035 | |a (DE-627)OLC2035023831 | ||
035 | |a (DE-He213)s11042-015-2692-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q VZ |
100 | 1 | |a Bao, Lei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Video saliency detection using 3D shearlet transform |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2015 | ||
520 | |a Abstract Recently, visual saliency detection has received great interest. As most video saliency detection models are based on spatiotemporal mechanism, we firstly give a simple introduction of it in this paper. After discussing issues to be addressed, we present a novel framework for video saliency detection based on 3D discrete shearlet transform. Instead of measuring saliency by fusing spatial and temporal saliency maps, the proposed model regards video as three-dimensional data. By decomposing the video with 3D discrete shearlet transform and reconstructing it on multi-scales, this multi-scale saliency detection model obtains a number of feature blocks to describe the video. Based on each feature block, every a number of successive feature maps are taken as a whole, and the global contrast is calculated to obtain the saliency maps. By fusing all the saliency maps of different levels, the saliency map is generated for each video frame. This novel framework is very simple, and experimental results on ten videos show that the proposed model outperforms lots existing models. | ||
650 | 4 | |a Video saliency detection | |
650 | 4 | |a 3D discrete shearlet transform | |
650 | 4 | |a Feature blocks | |
650 | 4 | |a Global probability density | |
700 | 1 | |a Zhang, Xiongwei |4 aut | |
700 | 1 | |a Zheng, Yunfei |4 aut | |
700 | 1 | |a Li, Yang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Multimedia tools and applications |d Springer US, 1995 |g 75(2015), 13 vom: 23. Juni, Seite 7761-7778 |w (DE-627)189064145 |w (DE-600)1287642-2 |w (DE-576)052842126 |x 1380-7501 |7 nnns |
773 | 1 | 8 | |g volume:75 |g year:2015 |g number:13 |g day:23 |g month:06 |g pages:7761-7778 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11042-015-2692-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OLC-MKW | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 75 |j 2015 |e 13 |b 23 |c 06 |h 7761-7778 |
author_variant |
l b lb x z xz y z yz y l yl |
---|---|
matchkey_str |
article:13807501:2015----::ieslecdtcinsn3se |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s11042-015-2692-4 doi (DE-627)OLC2035023831 (DE-He213)s11042-015-2692-4-p DE-627 ger DE-627 rakwb eng 070 004 VZ Bao, Lei verfasserin aut Video saliency detection using 3D shearlet transform 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Recently, visual saliency detection has received great interest. As most video saliency detection models are based on spatiotemporal mechanism, we firstly give a simple introduction of it in this paper. After discussing issues to be addressed, we present a novel framework for video saliency detection based on 3D discrete shearlet transform. Instead of measuring saliency by fusing spatial and temporal saliency maps, the proposed model regards video as three-dimensional data. By decomposing the video with 3D discrete shearlet transform and reconstructing it on multi-scales, this multi-scale saliency detection model obtains a number of feature blocks to describe the video. Based on each feature block, every a number of successive feature maps are taken as a whole, and the global contrast is calculated to obtain the saliency maps. By fusing all the saliency maps of different levels, the saliency map is generated for each video frame. This novel framework is very simple, and experimental results on ten videos show that the proposed model outperforms lots existing models. Video saliency detection 3D discrete shearlet transform Feature blocks Global probability density Zhang, Xiongwei aut Zheng, Yunfei aut Li, Yang aut Enthalten in Multimedia tools and applications Springer US, 1995 75(2015), 13 vom: 23. Juni, Seite 7761-7778 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:75 year:2015 number:13 day:23 month:06 pages:7761-7778 https://doi.org/10.1007/s11042-015-2692-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 75 2015 13 23 06 7761-7778 |
spelling |
10.1007/s11042-015-2692-4 doi (DE-627)OLC2035023831 (DE-He213)s11042-015-2692-4-p DE-627 ger DE-627 rakwb eng 070 004 VZ Bao, Lei verfasserin aut Video saliency detection using 3D shearlet transform 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Recently, visual saliency detection has received great interest. As most video saliency detection models are based on spatiotemporal mechanism, we firstly give a simple introduction of it in this paper. After discussing issues to be addressed, we present a novel framework for video saliency detection based on 3D discrete shearlet transform. Instead of measuring saliency by fusing spatial and temporal saliency maps, the proposed model regards video as three-dimensional data. By decomposing the video with 3D discrete shearlet transform and reconstructing it on multi-scales, this multi-scale saliency detection model obtains a number of feature blocks to describe the video. Based on each feature block, every a number of successive feature maps are taken as a whole, and the global contrast is calculated to obtain the saliency maps. By fusing all the saliency maps of different levels, the saliency map is generated for each video frame. This novel framework is very simple, and experimental results on ten videos show that the proposed model outperforms lots existing models. Video saliency detection 3D discrete shearlet transform Feature blocks Global probability density Zhang, Xiongwei aut Zheng, Yunfei aut Li, Yang aut Enthalten in Multimedia tools and applications Springer US, 1995 75(2015), 13 vom: 23. Juni, Seite 7761-7778 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:75 year:2015 number:13 day:23 month:06 pages:7761-7778 https://doi.org/10.1007/s11042-015-2692-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 75 2015 13 23 06 7761-7778 |
allfields_unstemmed |
10.1007/s11042-015-2692-4 doi (DE-627)OLC2035023831 (DE-He213)s11042-015-2692-4-p DE-627 ger DE-627 rakwb eng 070 004 VZ Bao, Lei verfasserin aut Video saliency detection using 3D shearlet transform 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Recently, visual saliency detection has received great interest. As most video saliency detection models are based on spatiotemporal mechanism, we firstly give a simple introduction of it in this paper. After discussing issues to be addressed, we present a novel framework for video saliency detection based on 3D discrete shearlet transform. Instead of measuring saliency by fusing spatial and temporal saliency maps, the proposed model regards video as three-dimensional data. By decomposing the video with 3D discrete shearlet transform and reconstructing it on multi-scales, this multi-scale saliency detection model obtains a number of feature blocks to describe the video. Based on each feature block, every a number of successive feature maps are taken as a whole, and the global contrast is calculated to obtain the saliency maps. By fusing all the saliency maps of different levels, the saliency map is generated for each video frame. This novel framework is very simple, and experimental results on ten videos show that the proposed model outperforms lots existing models. Video saliency detection 3D discrete shearlet transform Feature blocks Global probability density Zhang, Xiongwei aut Zheng, Yunfei aut Li, Yang aut Enthalten in Multimedia tools and applications Springer US, 1995 75(2015), 13 vom: 23. Juni, Seite 7761-7778 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:75 year:2015 number:13 day:23 month:06 pages:7761-7778 https://doi.org/10.1007/s11042-015-2692-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 75 2015 13 23 06 7761-7778 |
allfieldsGer |
10.1007/s11042-015-2692-4 doi (DE-627)OLC2035023831 (DE-He213)s11042-015-2692-4-p DE-627 ger DE-627 rakwb eng 070 004 VZ Bao, Lei verfasserin aut Video saliency detection using 3D shearlet transform 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Recently, visual saliency detection has received great interest. As most video saliency detection models are based on spatiotemporal mechanism, we firstly give a simple introduction of it in this paper. After discussing issues to be addressed, we present a novel framework for video saliency detection based on 3D discrete shearlet transform. Instead of measuring saliency by fusing spatial and temporal saliency maps, the proposed model regards video as three-dimensional data. By decomposing the video with 3D discrete shearlet transform and reconstructing it on multi-scales, this multi-scale saliency detection model obtains a number of feature blocks to describe the video. Based on each feature block, every a number of successive feature maps are taken as a whole, and the global contrast is calculated to obtain the saliency maps. By fusing all the saliency maps of different levels, the saliency map is generated for each video frame. This novel framework is very simple, and experimental results on ten videos show that the proposed model outperforms lots existing models. Video saliency detection 3D discrete shearlet transform Feature blocks Global probability density Zhang, Xiongwei aut Zheng, Yunfei aut Li, Yang aut Enthalten in Multimedia tools and applications Springer US, 1995 75(2015), 13 vom: 23. Juni, Seite 7761-7778 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:75 year:2015 number:13 day:23 month:06 pages:7761-7778 https://doi.org/10.1007/s11042-015-2692-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 75 2015 13 23 06 7761-7778 |
allfieldsSound |
10.1007/s11042-015-2692-4 doi (DE-627)OLC2035023831 (DE-He213)s11042-015-2692-4-p DE-627 ger DE-627 rakwb eng 070 004 VZ Bao, Lei verfasserin aut Video saliency detection using 3D shearlet transform 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2015 Abstract Recently, visual saliency detection has received great interest. As most video saliency detection models are based on spatiotemporal mechanism, we firstly give a simple introduction of it in this paper. After discussing issues to be addressed, we present a novel framework for video saliency detection based on 3D discrete shearlet transform. Instead of measuring saliency by fusing spatial and temporal saliency maps, the proposed model regards video as three-dimensional data. By decomposing the video with 3D discrete shearlet transform and reconstructing it on multi-scales, this multi-scale saliency detection model obtains a number of feature blocks to describe the video. Based on each feature block, every a number of successive feature maps are taken as a whole, and the global contrast is calculated to obtain the saliency maps. By fusing all the saliency maps of different levels, the saliency map is generated for each video frame. This novel framework is very simple, and experimental results on ten videos show that the proposed model outperforms lots existing models. Video saliency detection 3D discrete shearlet transform Feature blocks Global probability density Zhang, Xiongwei aut Zheng, Yunfei aut Li, Yang aut Enthalten in Multimedia tools and applications Springer US, 1995 75(2015), 13 vom: 23. Juni, Seite 7761-7778 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:75 year:2015 number:13 day:23 month:06 pages:7761-7778 https://doi.org/10.1007/s11042-015-2692-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 75 2015 13 23 06 7761-7778 |
language |
English |
source |
Enthalten in Multimedia tools and applications 75(2015), 13 vom: 23. Juni, Seite 7761-7778 volume:75 year:2015 number:13 day:23 month:06 pages:7761-7778 |
sourceStr |
Enthalten in Multimedia tools and applications 75(2015), 13 vom: 23. Juni, Seite 7761-7778 volume:75 year:2015 number:13 day:23 month:06 pages:7761-7778 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Video saliency detection 3D discrete shearlet transform Feature blocks Global probability density |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Multimedia tools and applications |
authorswithroles_txt_mv |
Bao, Lei @@aut@@ Zhang, Xiongwei @@aut@@ Zheng, Yunfei @@aut@@ Li, Yang @@aut@@ |
publishDateDaySort_date |
2015-06-23T00:00:00Z |
hierarchy_top_id |
189064145 |
dewey-sort |
270 |
id |
OLC2035023831 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2035023831</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503192842.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-015-2692-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2035023831</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-015-2692-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bao, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Video saliency detection using 3D shearlet transform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Recently, visual saliency detection has received great interest. As most video saliency detection models are based on spatiotemporal mechanism, we firstly give a simple introduction of it in this paper. After discussing issues to be addressed, we present a novel framework for video saliency detection based on 3D discrete shearlet transform. Instead of measuring saliency by fusing spatial and temporal saliency maps, the proposed model regards video as three-dimensional data. By decomposing the video with 3D discrete shearlet transform and reconstructing it on multi-scales, this multi-scale saliency detection model obtains a number of feature blocks to describe the video. Based on each feature block, every a number of successive feature maps are taken as a whole, and the global contrast is calculated to obtain the saliency maps. By fusing all the saliency maps of different levels, the saliency map is generated for each video frame. This novel framework is very simple, and experimental results on ten videos show that the proposed model outperforms lots existing models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Video saliency detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D discrete shearlet transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature blocks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global probability density</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiongwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Yunfei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">75(2015), 13 vom: 23. Juni, Seite 7761-7778</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:13</subfield><subfield code="g">day:23</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:7761-7778</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-015-2692-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2015</subfield><subfield code="e">13</subfield><subfield code="b">23</subfield><subfield code="c">06</subfield><subfield code="h">7761-7778</subfield></datafield></record></collection>
|
author |
Bao, Lei |
spellingShingle |
Bao, Lei ddc 070 misc Video saliency detection misc 3D discrete shearlet transform misc Feature blocks misc Global probability density Video saliency detection using 3D shearlet transform |
authorStr |
Bao, Lei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)189064145 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1380-7501 |
topic_title |
070 004 VZ Video saliency detection using 3D shearlet transform Video saliency detection 3D discrete shearlet transform Feature blocks Global probability density |
topic |
ddc 070 misc Video saliency detection misc 3D discrete shearlet transform misc Feature blocks misc Global probability density |
topic_unstemmed |
ddc 070 misc Video saliency detection misc 3D discrete shearlet transform misc Feature blocks misc Global probability density |
topic_browse |
ddc 070 misc Video saliency detection misc 3D discrete shearlet transform misc Feature blocks misc Global probability density |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Multimedia tools and applications |
hierarchy_parent_id |
189064145 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Multimedia tools and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 |
title |
Video saliency detection using 3D shearlet transform |
ctrlnum |
(DE-627)OLC2035023831 (DE-He213)s11042-015-2692-4-p |
title_full |
Video saliency detection using 3D shearlet transform |
author_sort |
Bao, Lei |
journal |
Multimedia tools and applications |
journalStr |
Multimedia tools and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
7761 |
author_browse |
Bao, Lei Zhang, Xiongwei Zheng, Yunfei Li, Yang |
container_volume |
75 |
class |
070 004 VZ |
format_se |
Aufsätze |
author-letter |
Bao, Lei |
doi_str_mv |
10.1007/s11042-015-2692-4 |
dewey-full |
070 004 |
title_sort |
video saliency detection using 3d shearlet transform |
title_auth |
Video saliency detection using 3D shearlet transform |
abstract |
Abstract Recently, visual saliency detection has received great interest. As most video saliency detection models are based on spatiotemporal mechanism, we firstly give a simple introduction of it in this paper. After discussing issues to be addressed, we present a novel framework for video saliency detection based on 3D discrete shearlet transform. Instead of measuring saliency by fusing spatial and temporal saliency maps, the proposed model regards video as three-dimensional data. By decomposing the video with 3D discrete shearlet transform and reconstructing it on multi-scales, this multi-scale saliency detection model obtains a number of feature blocks to describe the video. Based on each feature block, every a number of successive feature maps are taken as a whole, and the global contrast is calculated to obtain the saliency maps. By fusing all the saliency maps of different levels, the saliency map is generated for each video frame. This novel framework is very simple, and experimental results on ten videos show that the proposed model outperforms lots existing models. © Springer Science+Business Media New York 2015 |
abstractGer |
Abstract Recently, visual saliency detection has received great interest. As most video saliency detection models are based on spatiotemporal mechanism, we firstly give a simple introduction of it in this paper. After discussing issues to be addressed, we present a novel framework for video saliency detection based on 3D discrete shearlet transform. Instead of measuring saliency by fusing spatial and temporal saliency maps, the proposed model regards video as three-dimensional data. By decomposing the video with 3D discrete shearlet transform and reconstructing it on multi-scales, this multi-scale saliency detection model obtains a number of feature blocks to describe the video. Based on each feature block, every a number of successive feature maps are taken as a whole, and the global contrast is calculated to obtain the saliency maps. By fusing all the saliency maps of different levels, the saliency map is generated for each video frame. This novel framework is very simple, and experimental results on ten videos show that the proposed model outperforms lots existing models. © Springer Science+Business Media New York 2015 |
abstract_unstemmed |
Abstract Recently, visual saliency detection has received great interest. As most video saliency detection models are based on spatiotemporal mechanism, we firstly give a simple introduction of it in this paper. After discussing issues to be addressed, we present a novel framework for video saliency detection based on 3D discrete shearlet transform. Instead of measuring saliency by fusing spatial and temporal saliency maps, the proposed model regards video as three-dimensional data. By decomposing the video with 3D discrete shearlet transform and reconstructing it on multi-scales, this multi-scale saliency detection model obtains a number of feature blocks to describe the video. Based on each feature block, every a number of successive feature maps are taken as a whole, and the global contrast is calculated to obtain the saliency maps. By fusing all the saliency maps of different levels, the saliency map is generated for each video frame. This novel framework is very simple, and experimental results on ten videos show that the proposed model outperforms lots existing models. © Springer Science+Business Media New York 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 |
container_issue |
13 |
title_short |
Video saliency detection using 3D shearlet transform |
url |
https://doi.org/10.1007/s11042-015-2692-4 |
remote_bool |
false |
author2 |
Zhang, Xiongwei Zheng, Yunfei Li, Yang |
author2Str |
Zhang, Xiongwei Zheng, Yunfei Li, Yang |
ppnlink |
189064145 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11042-015-2692-4 |
up_date |
2024-07-03T23:28:59.189Z |
_version_ |
1803602455897833472 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2035023831</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503192842.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-015-2692-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2035023831</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-015-2692-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bao, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Video saliency detection using 3D shearlet transform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Recently, visual saliency detection has received great interest. As most video saliency detection models are based on spatiotemporal mechanism, we firstly give a simple introduction of it in this paper. After discussing issues to be addressed, we present a novel framework for video saliency detection based on 3D discrete shearlet transform. Instead of measuring saliency by fusing spatial and temporal saliency maps, the proposed model regards video as three-dimensional data. By decomposing the video with 3D discrete shearlet transform and reconstructing it on multi-scales, this multi-scale saliency detection model obtains a number of feature blocks to describe the video. Based on each feature block, every a number of successive feature maps are taken as a whole, and the global contrast is calculated to obtain the saliency maps. By fusing all the saliency maps of different levels, the saliency map is generated for each video frame. This novel framework is very simple, and experimental results on ten videos show that the proposed model outperforms lots existing models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Video saliency detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D discrete shearlet transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature blocks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global probability density</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiongwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Yunfei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">75(2015), 13 vom: 23. Juni, Seite 7761-7778</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:75</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:13</subfield><subfield code="g">day:23</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:7761-7778</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-015-2692-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">75</subfield><subfield code="j">2015</subfield><subfield code="e">13</subfield><subfield code="b">23</subfield><subfield code="c">06</subfield><subfield code="h">7761-7778</subfield></datafield></record></collection>
|
score |
7.401457 |