Real-time scene background initialization based on spatio-temporal neighborhood exploration
Abstract In this paper, we address the problem of scene background initialization to define a background model free from foreground objects. The complexity of this task resides in the continuous clutter of the scene by moving and stationary objects. To face this challenge, we propose a robust real-t...
Ausführliche Beschreibung
Autor*in: |
Mseddi, Wided Souidene [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Multimedia tools and applications - Springer US, 1995, 78(2018), 6 vom: 09. Aug., Seite 7289-7319 |
---|---|
Übergeordnetes Werk: |
volume:78 ; year:2018 ; number:6 ; day:09 ; month:08 ; pages:7289-7319 |
Links: |
---|
DOI / URN: |
10.1007/s11042-018-6399-1 |
---|
Katalog-ID: |
OLC2035060184 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2035060184 | ||
003 | DE-627 | ||
005 | 20230503193737.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11042-018-6399-1 |2 doi | |
035 | |a (DE-627)OLC2035060184 | ||
035 | |a (DE-He213)s11042-018-6399-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q VZ |
100 | 1 | |a Mseddi, Wided Souidene |e verfasserin |0 (orcid)0000-0002-3002-4033 |4 aut | |
245 | 1 | 0 | |a Real-time scene background initialization based on spatio-temporal neighborhood exploration |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Abstract In this paper, we address the problem of scene background initialization to define a background model free from foreground objects. The complexity of this task resides in the continuous clutter of the scene by moving and stationary objects. To face this challenge, we propose a robust real-time iterative model completion method based on online block-level processing to initialize the background with low computational cost. First, temporal data analysis is conducted to cluster similar blocks. Meanwhile, a two-folded inter-block spatial neighborhood exploration is performed. It aims to capture relationships among neighboring clusters and reduce the number of candidate clusters employed in the next phase. Then, a smoothness analysis between neighboring locations is performed to iteratively reconstruct the background based on a newly proposed edge matching metric and an inter-block color discontinuity. Extensive evaluations of the proposed approach on the public Scene Background Initialization 2015 dataset and on the Scene Background Modeling Contest 2016 dataset revealed a performance superior or comparable to state-of-the-art methods. | ||
650 | 4 | |a Background initialization | |
650 | 4 | |a Online clustering | |
650 | 4 | |a Spatial exploration | |
650 | 4 | |a Edge matching | |
700 | 1 | |a Jmal, Marwa |4 aut | |
700 | 1 | |a Attia, Rabah |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Multimedia tools and applications |d Springer US, 1995 |g 78(2018), 6 vom: 09. Aug., Seite 7289-7319 |w (DE-627)189064145 |w (DE-600)1287642-2 |w (DE-576)052842126 |x 1380-7501 |7 nnns |
773 | 1 | 8 | |g volume:78 |g year:2018 |g number:6 |g day:09 |g month:08 |g pages:7289-7319 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11042-018-6399-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OLC-MKW | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 78 |j 2018 |e 6 |b 09 |c 08 |h 7289-7319 |
author_variant |
w s m ws wsm m j mj r a ra |
---|---|
matchkey_str |
article:13807501:2018----::eliecnbcgoniiilztobsdnptoeprle |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s11042-018-6399-1 doi (DE-627)OLC2035060184 (DE-He213)s11042-018-6399-1-p DE-627 ger DE-627 rakwb eng 070 004 VZ Mseddi, Wided Souidene verfasserin (orcid)0000-0002-3002-4033 aut Real-time scene background initialization based on spatio-temporal neighborhood exploration 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In this paper, we address the problem of scene background initialization to define a background model free from foreground objects. The complexity of this task resides in the continuous clutter of the scene by moving and stationary objects. To face this challenge, we propose a robust real-time iterative model completion method based on online block-level processing to initialize the background with low computational cost. First, temporal data analysis is conducted to cluster similar blocks. Meanwhile, a two-folded inter-block spatial neighborhood exploration is performed. It aims to capture relationships among neighboring clusters and reduce the number of candidate clusters employed in the next phase. Then, a smoothness analysis between neighboring locations is performed to iteratively reconstruct the background based on a newly proposed edge matching metric and an inter-block color discontinuity. Extensive evaluations of the proposed approach on the public Scene Background Initialization 2015 dataset and on the Scene Background Modeling Contest 2016 dataset revealed a performance superior or comparable to state-of-the-art methods. Background initialization Online clustering Spatial exploration Edge matching Jmal, Marwa aut Attia, Rabah aut Enthalten in Multimedia tools and applications Springer US, 1995 78(2018), 6 vom: 09. Aug., Seite 7289-7319 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:78 year:2018 number:6 day:09 month:08 pages:7289-7319 https://doi.org/10.1007/s11042-018-6399-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 78 2018 6 09 08 7289-7319 |
spelling |
10.1007/s11042-018-6399-1 doi (DE-627)OLC2035060184 (DE-He213)s11042-018-6399-1-p DE-627 ger DE-627 rakwb eng 070 004 VZ Mseddi, Wided Souidene verfasserin (orcid)0000-0002-3002-4033 aut Real-time scene background initialization based on spatio-temporal neighborhood exploration 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In this paper, we address the problem of scene background initialization to define a background model free from foreground objects. The complexity of this task resides in the continuous clutter of the scene by moving and stationary objects. To face this challenge, we propose a robust real-time iterative model completion method based on online block-level processing to initialize the background with low computational cost. First, temporal data analysis is conducted to cluster similar blocks. Meanwhile, a two-folded inter-block spatial neighborhood exploration is performed. It aims to capture relationships among neighboring clusters and reduce the number of candidate clusters employed in the next phase. Then, a smoothness analysis between neighboring locations is performed to iteratively reconstruct the background based on a newly proposed edge matching metric and an inter-block color discontinuity. Extensive evaluations of the proposed approach on the public Scene Background Initialization 2015 dataset and on the Scene Background Modeling Contest 2016 dataset revealed a performance superior or comparable to state-of-the-art methods. Background initialization Online clustering Spatial exploration Edge matching Jmal, Marwa aut Attia, Rabah aut Enthalten in Multimedia tools and applications Springer US, 1995 78(2018), 6 vom: 09. Aug., Seite 7289-7319 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:78 year:2018 number:6 day:09 month:08 pages:7289-7319 https://doi.org/10.1007/s11042-018-6399-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 78 2018 6 09 08 7289-7319 |
allfields_unstemmed |
10.1007/s11042-018-6399-1 doi (DE-627)OLC2035060184 (DE-He213)s11042-018-6399-1-p DE-627 ger DE-627 rakwb eng 070 004 VZ Mseddi, Wided Souidene verfasserin (orcid)0000-0002-3002-4033 aut Real-time scene background initialization based on spatio-temporal neighborhood exploration 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In this paper, we address the problem of scene background initialization to define a background model free from foreground objects. The complexity of this task resides in the continuous clutter of the scene by moving and stationary objects. To face this challenge, we propose a robust real-time iterative model completion method based on online block-level processing to initialize the background with low computational cost. First, temporal data analysis is conducted to cluster similar blocks. Meanwhile, a two-folded inter-block spatial neighborhood exploration is performed. It aims to capture relationships among neighboring clusters and reduce the number of candidate clusters employed in the next phase. Then, a smoothness analysis between neighboring locations is performed to iteratively reconstruct the background based on a newly proposed edge matching metric and an inter-block color discontinuity. Extensive evaluations of the proposed approach on the public Scene Background Initialization 2015 dataset and on the Scene Background Modeling Contest 2016 dataset revealed a performance superior or comparable to state-of-the-art methods. Background initialization Online clustering Spatial exploration Edge matching Jmal, Marwa aut Attia, Rabah aut Enthalten in Multimedia tools and applications Springer US, 1995 78(2018), 6 vom: 09. Aug., Seite 7289-7319 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:78 year:2018 number:6 day:09 month:08 pages:7289-7319 https://doi.org/10.1007/s11042-018-6399-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 78 2018 6 09 08 7289-7319 |
allfieldsGer |
10.1007/s11042-018-6399-1 doi (DE-627)OLC2035060184 (DE-He213)s11042-018-6399-1-p DE-627 ger DE-627 rakwb eng 070 004 VZ Mseddi, Wided Souidene verfasserin (orcid)0000-0002-3002-4033 aut Real-time scene background initialization based on spatio-temporal neighborhood exploration 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In this paper, we address the problem of scene background initialization to define a background model free from foreground objects. The complexity of this task resides in the continuous clutter of the scene by moving and stationary objects. To face this challenge, we propose a robust real-time iterative model completion method based on online block-level processing to initialize the background with low computational cost. First, temporal data analysis is conducted to cluster similar blocks. Meanwhile, a two-folded inter-block spatial neighborhood exploration is performed. It aims to capture relationships among neighboring clusters and reduce the number of candidate clusters employed in the next phase. Then, a smoothness analysis between neighboring locations is performed to iteratively reconstruct the background based on a newly proposed edge matching metric and an inter-block color discontinuity. Extensive evaluations of the proposed approach on the public Scene Background Initialization 2015 dataset and on the Scene Background Modeling Contest 2016 dataset revealed a performance superior or comparable to state-of-the-art methods. Background initialization Online clustering Spatial exploration Edge matching Jmal, Marwa aut Attia, Rabah aut Enthalten in Multimedia tools and applications Springer US, 1995 78(2018), 6 vom: 09. Aug., Seite 7289-7319 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:78 year:2018 number:6 day:09 month:08 pages:7289-7319 https://doi.org/10.1007/s11042-018-6399-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 78 2018 6 09 08 7289-7319 |
allfieldsSound |
10.1007/s11042-018-6399-1 doi (DE-627)OLC2035060184 (DE-He213)s11042-018-6399-1-p DE-627 ger DE-627 rakwb eng 070 004 VZ Mseddi, Wided Souidene verfasserin (orcid)0000-0002-3002-4033 aut Real-time scene background initialization based on spatio-temporal neighborhood exploration 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In this paper, we address the problem of scene background initialization to define a background model free from foreground objects. The complexity of this task resides in the continuous clutter of the scene by moving and stationary objects. To face this challenge, we propose a robust real-time iterative model completion method based on online block-level processing to initialize the background with low computational cost. First, temporal data analysis is conducted to cluster similar blocks. Meanwhile, a two-folded inter-block spatial neighborhood exploration is performed. It aims to capture relationships among neighboring clusters and reduce the number of candidate clusters employed in the next phase. Then, a smoothness analysis between neighboring locations is performed to iteratively reconstruct the background based on a newly proposed edge matching metric and an inter-block color discontinuity. Extensive evaluations of the proposed approach on the public Scene Background Initialization 2015 dataset and on the Scene Background Modeling Contest 2016 dataset revealed a performance superior or comparable to state-of-the-art methods. Background initialization Online clustering Spatial exploration Edge matching Jmal, Marwa aut Attia, Rabah aut Enthalten in Multimedia tools and applications Springer US, 1995 78(2018), 6 vom: 09. Aug., Seite 7289-7319 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:78 year:2018 number:6 day:09 month:08 pages:7289-7319 https://doi.org/10.1007/s11042-018-6399-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 AR 78 2018 6 09 08 7289-7319 |
language |
English |
source |
Enthalten in Multimedia tools and applications 78(2018), 6 vom: 09. Aug., Seite 7289-7319 volume:78 year:2018 number:6 day:09 month:08 pages:7289-7319 |
sourceStr |
Enthalten in Multimedia tools and applications 78(2018), 6 vom: 09. Aug., Seite 7289-7319 volume:78 year:2018 number:6 day:09 month:08 pages:7289-7319 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Background initialization Online clustering Spatial exploration Edge matching |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Multimedia tools and applications |
authorswithroles_txt_mv |
Mseddi, Wided Souidene @@aut@@ Jmal, Marwa @@aut@@ Attia, Rabah @@aut@@ |
publishDateDaySort_date |
2018-08-09T00:00:00Z |
hierarchy_top_id |
189064145 |
dewey-sort |
270 |
id |
OLC2035060184 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2035060184</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503193737.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-018-6399-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2035060184</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-018-6399-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mseddi, Wided Souidene</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3002-4033</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-time scene background initialization based on spatio-temporal neighborhood exploration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we address the problem of scene background initialization to define a background model free from foreground objects. The complexity of this task resides in the continuous clutter of the scene by moving and stationary objects. To face this challenge, we propose a robust real-time iterative model completion method based on online block-level processing to initialize the background with low computational cost. First, temporal data analysis is conducted to cluster similar blocks. Meanwhile, a two-folded inter-block spatial neighborhood exploration is performed. It aims to capture relationships among neighboring clusters and reduce the number of candidate clusters employed in the next phase. Then, a smoothness analysis between neighboring locations is performed to iteratively reconstruct the background based on a newly proposed edge matching metric and an inter-block color discontinuity. Extensive evaluations of the proposed approach on the public Scene Background Initialization 2015 dataset and on the Scene Background Modeling Contest 2016 dataset revealed a performance superior or comparable to state-of-the-art methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Background initialization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial exploration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Edge matching</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jmal, Marwa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Attia, Rabah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">78(2018), 6 vom: 09. Aug., Seite 7289-7319</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:78</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:6</subfield><subfield code="g">day:09</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:7289-7319</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-018-6399-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">78</subfield><subfield code="j">2018</subfield><subfield code="e">6</subfield><subfield code="b">09</subfield><subfield code="c">08</subfield><subfield code="h">7289-7319</subfield></datafield></record></collection>
|
author |
Mseddi, Wided Souidene |
spellingShingle |
Mseddi, Wided Souidene ddc 070 misc Background initialization misc Online clustering misc Spatial exploration misc Edge matching Real-time scene background initialization based on spatio-temporal neighborhood exploration |
authorStr |
Mseddi, Wided Souidene |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)189064145 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1380-7501 |
topic_title |
070 004 VZ Real-time scene background initialization based on spatio-temporal neighborhood exploration Background initialization Online clustering Spatial exploration Edge matching |
topic |
ddc 070 misc Background initialization misc Online clustering misc Spatial exploration misc Edge matching |
topic_unstemmed |
ddc 070 misc Background initialization misc Online clustering misc Spatial exploration misc Edge matching |
topic_browse |
ddc 070 misc Background initialization misc Online clustering misc Spatial exploration misc Edge matching |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Multimedia tools and applications |
hierarchy_parent_id |
189064145 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Multimedia tools and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 |
title |
Real-time scene background initialization based on spatio-temporal neighborhood exploration |
ctrlnum |
(DE-627)OLC2035060184 (DE-He213)s11042-018-6399-1-p |
title_full |
Real-time scene background initialization based on spatio-temporal neighborhood exploration |
author_sort |
Mseddi, Wided Souidene |
journal |
Multimedia tools and applications |
journalStr |
Multimedia tools and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
7289 |
author_browse |
Mseddi, Wided Souidene Jmal, Marwa Attia, Rabah |
container_volume |
78 |
class |
070 004 VZ |
format_se |
Aufsätze |
author-letter |
Mseddi, Wided Souidene |
doi_str_mv |
10.1007/s11042-018-6399-1 |
normlink |
(ORCID)0000-0002-3002-4033 |
normlink_prefix_str_mv |
(orcid)0000-0002-3002-4033 |
dewey-full |
070 004 |
title_sort |
real-time scene background initialization based on spatio-temporal neighborhood exploration |
title_auth |
Real-time scene background initialization based on spatio-temporal neighborhood exploration |
abstract |
Abstract In this paper, we address the problem of scene background initialization to define a background model free from foreground objects. The complexity of this task resides in the continuous clutter of the scene by moving and stationary objects. To face this challenge, we propose a robust real-time iterative model completion method based on online block-level processing to initialize the background with low computational cost. First, temporal data analysis is conducted to cluster similar blocks. Meanwhile, a two-folded inter-block spatial neighborhood exploration is performed. It aims to capture relationships among neighboring clusters and reduce the number of candidate clusters employed in the next phase. Then, a smoothness analysis between neighboring locations is performed to iteratively reconstruct the background based on a newly proposed edge matching metric and an inter-block color discontinuity. Extensive evaluations of the proposed approach on the public Scene Background Initialization 2015 dataset and on the Scene Background Modeling Contest 2016 dataset revealed a performance superior or comparable to state-of-the-art methods. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Abstract In this paper, we address the problem of scene background initialization to define a background model free from foreground objects. The complexity of this task resides in the continuous clutter of the scene by moving and stationary objects. To face this challenge, we propose a robust real-time iterative model completion method based on online block-level processing to initialize the background with low computational cost. First, temporal data analysis is conducted to cluster similar blocks. Meanwhile, a two-folded inter-block spatial neighborhood exploration is performed. It aims to capture relationships among neighboring clusters and reduce the number of candidate clusters employed in the next phase. Then, a smoothness analysis between neighboring locations is performed to iteratively reconstruct the background based on a newly proposed edge matching metric and an inter-block color discontinuity. Extensive evaluations of the proposed approach on the public Scene Background Initialization 2015 dataset and on the Scene Background Modeling Contest 2016 dataset revealed a performance superior or comparable to state-of-the-art methods. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract In this paper, we address the problem of scene background initialization to define a background model free from foreground objects. The complexity of this task resides in the continuous clutter of the scene by moving and stationary objects. To face this challenge, we propose a robust real-time iterative model completion method based on online block-level processing to initialize the background with low computational cost. First, temporal data analysis is conducted to cluster similar blocks. Meanwhile, a two-folded inter-block spatial neighborhood exploration is performed. It aims to capture relationships among neighboring clusters and reduce the number of candidate clusters employed in the next phase. Then, a smoothness analysis between neighboring locations is performed to iteratively reconstruct the background based on a newly proposed edge matching metric and an inter-block color discontinuity. Extensive evaluations of the proposed approach on the public Scene Background Initialization 2015 dataset and on the Scene Background Modeling Contest 2016 dataset revealed a performance superior or comparable to state-of-the-art methods. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW GBV_ILN_70 |
container_issue |
6 |
title_short |
Real-time scene background initialization based on spatio-temporal neighborhood exploration |
url |
https://doi.org/10.1007/s11042-018-6399-1 |
remote_bool |
false |
author2 |
Jmal, Marwa Attia, Rabah |
author2Str |
Jmal, Marwa Attia, Rabah |
ppnlink |
189064145 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11042-018-6399-1 |
up_date |
2024-07-03T23:38:51.935Z |
_version_ |
1803603077430771712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2035060184</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503193737.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-018-6399-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2035060184</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-018-6399-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mseddi, Wided Souidene</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3002-4033</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-time scene background initialization based on spatio-temporal neighborhood exploration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we address the problem of scene background initialization to define a background model free from foreground objects. The complexity of this task resides in the continuous clutter of the scene by moving and stationary objects. To face this challenge, we propose a robust real-time iterative model completion method based on online block-level processing to initialize the background with low computational cost. First, temporal data analysis is conducted to cluster similar blocks. Meanwhile, a two-folded inter-block spatial neighborhood exploration is performed. It aims to capture relationships among neighboring clusters and reduce the number of candidate clusters employed in the next phase. Then, a smoothness analysis between neighboring locations is performed to iteratively reconstruct the background based on a newly proposed edge matching metric and an inter-block color discontinuity. Extensive evaluations of the proposed approach on the public Scene Background Initialization 2015 dataset and on the Scene Background Modeling Contest 2016 dataset revealed a performance superior or comparable to state-of-the-art methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Background initialization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Online clustering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial exploration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Edge matching</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jmal, Marwa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Attia, Rabah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">78(2018), 6 vom: 09. Aug., Seite 7289-7319</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:78</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:6</subfield><subfield code="g">day:09</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:7289-7319</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-018-6399-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">78</subfield><subfield code="j">2018</subfield><subfield code="e">6</subfield><subfield code="b">09</subfield><subfield code="c">08</subfield><subfield code="h">7289-7319</subfield></datafield></record></collection>
|
score |
7.402011 |