The p-Modular Descent Algebras
Abstract The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the d...
Ausführliche Beschreibung
Autor*in: |
Atkinson, M. D. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2002 |
---|
Anmerkung: |
© Kluwer Academic Publishers 2002 |
---|
Übergeordnetes Werk: |
Enthalten in: Algebras and representation theory - Kluwer Academic Publishers, 1998, 5(2002), 1 vom: März, Seite 101-113 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2002 ; number:1 ; month:03 ; pages:101-113 |
Links: |
---|
DOI / URN: |
10.1023/A:1014413413572 |
---|
Katalog-ID: |
OLC2036434274 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2036434274 | ||
003 | DE-627 | ||
005 | 20230502195746.0 | ||
007 | tu | ||
008 | 200820s2002 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1014413413572 |2 doi | |
035 | |a (DE-627)OLC2036434274 | ||
035 | |a (DE-He213)A:1014413413572-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik |2 bkl | ||
084 | |a 31.21$jGruppentheorie |2 bkl | ||
100 | 1 | |a Atkinson, M. D. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The p-Modular Descent Algebras |
264 | 1 | |c 2002 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 2002 | ||
520 | |a Abstract The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the descent algebras of Coxeter group types A, B, and D are calculated, and used to derive a description of the decomposition matrix of an arbitrary descent algebra. The Cartan matrix of a variety of descent algebras over a finite field is then obtained. | ||
700 | 1 | |a Pfeiffer, G. |4 aut | |
700 | 1 | |a van Willigenburg, S. J. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Algebras and representation theory |d Kluwer Academic Publishers, 1998 |g 5(2002), 1 vom: März, Seite 101-113 |w (DE-627)254285066 |w (DE-600)1463085-0 |w (DE-576)081894716 |x 1386-923X |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2002 |g number:1 |g month:03 |g pages:101-113 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1014413413572 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4310 | ||
936 | b | k | |a 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik |q VZ |0 106418971 |0 (DE-625)106418971 |
936 | b | k | |a 31.21$jGruppentheorie |q VZ |0 106408445 |0 (DE-625)106408445 |
951 | |a AR | ||
952 | |d 5 |j 2002 |e 1 |c 03 |h 101-113 |
author_variant |
m d a md mda g p gp w s j v wsj wsjv |
---|---|
matchkey_str |
article:1386923X:2002----::hpouadset |
hierarchy_sort_str |
2002 |
bklnumber |
31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik 31.21$jGruppentheorie |
publishDate |
2002 |
allfields |
10.1023/A:1014413413572 doi (DE-627)OLC2036434274 (DE-He213)A:1014413413572-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Atkinson, M. D. verfasserin aut The p-Modular Descent Algebras 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2002 Abstract The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the descent algebras of Coxeter group types A, B, and D are calculated, and used to derive a description of the decomposition matrix of an arbitrary descent algebra. The Cartan matrix of a variety of descent algebras over a finite field is then obtained. Pfeiffer, G. aut van Willigenburg, S. J. aut Enthalten in Algebras and representation theory Kluwer Academic Publishers, 1998 5(2002), 1 vom: März, Seite 101-113 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:5 year:2002 number:1 month:03 pages:101-113 https://doi.org/10.1023/A:1014413413572 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_31 GBV_ILN_40 GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 5 2002 1 03 101-113 |
spelling |
10.1023/A:1014413413572 doi (DE-627)OLC2036434274 (DE-He213)A:1014413413572-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Atkinson, M. D. verfasserin aut The p-Modular Descent Algebras 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2002 Abstract The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the descent algebras of Coxeter group types A, B, and D are calculated, and used to derive a description of the decomposition matrix of an arbitrary descent algebra. The Cartan matrix of a variety of descent algebras over a finite field is then obtained. Pfeiffer, G. aut van Willigenburg, S. J. aut Enthalten in Algebras and representation theory Kluwer Academic Publishers, 1998 5(2002), 1 vom: März, Seite 101-113 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:5 year:2002 number:1 month:03 pages:101-113 https://doi.org/10.1023/A:1014413413572 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_31 GBV_ILN_40 GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 5 2002 1 03 101-113 |
allfields_unstemmed |
10.1023/A:1014413413572 doi (DE-627)OLC2036434274 (DE-He213)A:1014413413572-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Atkinson, M. D. verfasserin aut The p-Modular Descent Algebras 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2002 Abstract The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the descent algebras of Coxeter group types A, B, and D are calculated, and used to derive a description of the decomposition matrix of an arbitrary descent algebra. The Cartan matrix of a variety of descent algebras over a finite field is then obtained. Pfeiffer, G. aut van Willigenburg, S. J. aut Enthalten in Algebras and representation theory Kluwer Academic Publishers, 1998 5(2002), 1 vom: März, Seite 101-113 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:5 year:2002 number:1 month:03 pages:101-113 https://doi.org/10.1023/A:1014413413572 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_31 GBV_ILN_40 GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 5 2002 1 03 101-113 |
allfieldsGer |
10.1023/A:1014413413572 doi (DE-627)OLC2036434274 (DE-He213)A:1014413413572-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Atkinson, M. D. verfasserin aut The p-Modular Descent Algebras 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2002 Abstract The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the descent algebras of Coxeter group types A, B, and D are calculated, and used to derive a description of the decomposition matrix of an arbitrary descent algebra. The Cartan matrix of a variety of descent algebras over a finite field is then obtained. Pfeiffer, G. aut van Willigenburg, S. J. aut Enthalten in Algebras and representation theory Kluwer Academic Publishers, 1998 5(2002), 1 vom: März, Seite 101-113 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:5 year:2002 number:1 month:03 pages:101-113 https://doi.org/10.1023/A:1014413413572 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_31 GBV_ILN_40 GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 5 2002 1 03 101-113 |
allfieldsSound |
10.1023/A:1014413413572 doi (DE-627)OLC2036434274 (DE-He213)A:1014413413572-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Atkinson, M. D. verfasserin aut The p-Modular Descent Algebras 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2002 Abstract The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the descent algebras of Coxeter group types A, B, and D are calculated, and used to derive a description of the decomposition matrix of an arbitrary descent algebra. The Cartan matrix of a variety of descent algebras over a finite field is then obtained. Pfeiffer, G. aut van Willigenburg, S. J. aut Enthalten in Algebras and representation theory Kluwer Academic Publishers, 1998 5(2002), 1 vom: März, Seite 101-113 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:5 year:2002 number:1 month:03 pages:101-113 https://doi.org/10.1023/A:1014413413572 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_31 GBV_ILN_40 GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 5 2002 1 03 101-113 |
language |
English |
source |
Enthalten in Algebras and representation theory 5(2002), 1 vom: März, Seite 101-113 volume:5 year:2002 number:1 month:03 pages:101-113 |
sourceStr |
Enthalten in Algebras and representation theory 5(2002), 1 vom: März, Seite 101-113 volume:5 year:2002 number:1 month:03 pages:101-113 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Algebras and representation theory |
authorswithroles_txt_mv |
Atkinson, M. D. @@aut@@ Pfeiffer, G. @@aut@@ van Willigenburg, S. J. @@aut@@ |
publishDateDaySort_date |
2002-03-01T00:00:00Z |
hierarchy_top_id |
254285066 |
dewey-sort |
3510 |
id |
OLC2036434274 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036434274</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195746.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1014413413572</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036434274</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1014413413572-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.21$jGruppentheorie</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Atkinson, M. D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The p-Modular Descent Algebras</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the descent algebras of Coxeter group types A, B, and D are calculated, and used to derive a description of the decomposition matrix of an arbitrary descent algebra. The Cartan matrix of a variety of descent algebras over a finite field is then obtained.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pfeiffer, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Willigenburg, S. J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebras and representation theory</subfield><subfield code="d">Kluwer Academic Publishers, 1998</subfield><subfield code="g">5(2002), 1 vom: März, Seite 101-113</subfield><subfield code="w">(DE-627)254285066</subfield><subfield code="w">(DE-600)1463085-0</subfield><subfield code="w">(DE-576)081894716</subfield><subfield code="x">1386-923X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:101-113</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1014413413572</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418971</subfield><subfield code="0">(DE-625)106418971</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.21$jGruppentheorie</subfield><subfield code="q">VZ</subfield><subfield code="0">106408445</subfield><subfield code="0">(DE-625)106408445</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2002</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">101-113</subfield></datafield></record></collection>
|
author |
Atkinson, M. D. |
spellingShingle |
Atkinson, M. D. ddc 510 ssgn 17,1 bkl 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie The p-Modular Descent Algebras |
authorStr |
Atkinson, M. D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254285066 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1386-923X |
topic_title |
510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl The p-Modular Descent Algebras |
topic |
ddc 510 ssgn 17,1 bkl 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algebras and representation theory |
hierarchy_parent_id |
254285066 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Algebras and representation theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 |
title |
The p-Modular Descent Algebras |
ctrlnum |
(DE-627)OLC2036434274 (DE-He213)A:1014413413572-p |
title_full |
The p-Modular Descent Algebras |
author_sort |
Atkinson, M. D. |
journal |
Algebras and representation theory |
journalStr |
Algebras and representation theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2002 |
contenttype_str_mv |
txt |
container_start_page |
101 |
author_browse |
Atkinson, M. D. Pfeiffer, G. van Willigenburg, S. J. |
container_volume |
5 |
class |
510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl |
format_se |
Aufsätze |
author-letter |
Atkinson, M. D. |
doi_str_mv |
10.1023/A:1014413413572 |
normlink |
106418971 106408445 |
normlink_prefix_str_mv |
106418971 (DE-625)106418971 106408445 (DE-625)106408445 |
dewey-full |
510 |
title_sort |
the p-modular descent algebras |
title_auth |
The p-Modular Descent Algebras |
abstract |
Abstract The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the descent algebras of Coxeter group types A, B, and D are calculated, and used to derive a description of the decomposition matrix of an arbitrary descent algebra. The Cartan matrix of a variety of descent algebras over a finite field is then obtained. © Kluwer Academic Publishers 2002 |
abstractGer |
Abstract The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the descent algebras of Coxeter group types A, B, and D are calculated, and used to derive a description of the decomposition matrix of an arbitrary descent algebra. The Cartan matrix of a variety of descent algebras over a finite field is then obtained. © Kluwer Academic Publishers 2002 |
abstract_unstemmed |
Abstract The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the descent algebras of Coxeter group types A, B, and D are calculated, and used to derive a description of the decomposition matrix of an arbitrary descent algebra. The Cartan matrix of a variety of descent algebras over a finite field is then obtained. © Kluwer Academic Publishers 2002 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_31 GBV_ILN_40 GBV_ILN_2088 GBV_ILN_4310 |
container_issue |
1 |
title_short |
The p-Modular Descent Algebras |
url |
https://doi.org/10.1023/A:1014413413572 |
remote_bool |
false |
author2 |
Pfeiffer, G. van Willigenburg, S. J. |
author2Str |
Pfeiffer, G. van Willigenburg, S. J. |
ppnlink |
254285066 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1014413413572 |
up_date |
2024-07-04T03:24:02.751Z |
_version_ |
1803617244553412608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036434274</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195746.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1014413413572</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036434274</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1014413413572-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.21$jGruppentheorie</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Atkinson, M. D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The p-Modular Descent Algebras</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The concept of descent algebras over a field of characteristic zero is extended to define descent algebras over a field of prime characteristic. Some basic algebraic structure of the latter, including its radical and irreducible modules, is then determined. The decomposition matrix of the descent algebras of Coxeter group types A, B, and D are calculated, and used to derive a description of the decomposition matrix of an arbitrary descent algebra. The Cartan matrix of a variety of descent algebras over a finite field is then obtained.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pfeiffer, G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Willigenburg, S. J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebras and representation theory</subfield><subfield code="d">Kluwer Academic Publishers, 1998</subfield><subfield code="g">5(2002), 1 vom: März, Seite 101-113</subfield><subfield code="w">(DE-627)254285066</subfield><subfield code="w">(DE-600)1463085-0</subfield><subfield code="w">(DE-576)081894716</subfield><subfield code="x">1386-923X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:101-113</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1014413413572</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418971</subfield><subfield code="0">(DE-625)106418971</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.21$jGruppentheorie</subfield><subfield code="q">VZ</subfield><subfield code="0">106408445</subfield><subfield code="0">(DE-625)106408445</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2002</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">101-113</subfield></datafield></record></collection>
|
score |
7.4028378 |