Complete Intersection Quiver Settings with One Dimensional Vertices
Abstract We describe the class of quiver settings with one dimensional vertices whose semi-simple representations are parametrized by a complete intersection variety. We show that these quivers can be reduced to a one vertex quiver with some combinatorial reduction steps. We introduce the notion of...
Ausführliche Beschreibung
Autor*in: |
Joó, Dániel [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media B.V. 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Algebras and representation theory - Springer Netherlands, 1998, 16(2012), 4 vom: 26. Mai, Seite 1109-1133 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2012 ; number:4 ; day:26 ; month:05 ; pages:1109-1133 |
Links: |
---|
DOI / URN: |
10.1007/s10468-012-9348-0 |
---|
Katalog-ID: |
OLC2036438601 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2036438601 | ||
003 | DE-627 | ||
005 | 20230502195802.0 | ||
007 | tu | ||
008 | 200820s2012 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10468-012-9348-0 |2 doi | |
035 | |a (DE-627)OLC2036438601 | ||
035 | |a (DE-He213)s10468-012-9348-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik |2 bkl | ||
084 | |a 31.21$jGruppentheorie |2 bkl | ||
100 | 1 | |a Joó, Dániel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Complete Intersection Quiver Settings with One Dimensional Vertices |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media B.V. 2012 | ||
520 | |a Abstract We describe the class of quiver settings with one dimensional vertices whose semi-simple representations are parametrized by a complete intersection variety. We show that these quivers can be reduced to a one vertex quiver with some combinatorial reduction steps. We introduce the notion of descendants which is similar to graph theoretic minors, and show that the class in question can be characterized as the quivers that do not have two specific forbidden descendants. We also prove that the class of coregular quiver settings with arbitrary dimension vector, which has been understood earlier via reduction steps, can also be described as the ones that do not contain a certain forbidden descendant. | ||
650 | 4 | |a Quiver settings | |
650 | 4 | |a Complete intersections | |
650 | 4 | |a Representation theory | |
773 | 0 | 8 | |i Enthalten in |t Algebras and representation theory |d Springer Netherlands, 1998 |g 16(2012), 4 vom: 26. Mai, Seite 1109-1133 |w (DE-627)254285066 |w (DE-600)1463085-0 |w (DE-576)081894716 |x 1386-923X |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2012 |g number:4 |g day:26 |g month:05 |g pages:1109-1133 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10468-012-9348-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4310 | ||
936 | b | k | |a 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik |q VZ |0 106418971 |0 (DE-625)106418971 |
936 | b | k | |a 31.21$jGruppentheorie |q VZ |0 106408445 |0 (DE-625)106408445 |
951 | |a AR | ||
952 | |d 16 |j 2012 |e 4 |b 26 |c 05 |h 1109-1133 |
author_variant |
d j dj |
---|---|
matchkey_str |
article:1386923X:2012----::opeenescinuvretnsihndm |
hierarchy_sort_str |
2012 |
bklnumber |
31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik 31.21$jGruppentheorie |
publishDate |
2012 |
allfields |
10.1007/s10468-012-9348-0 doi (DE-627)OLC2036438601 (DE-He213)s10468-012-9348-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Joó, Dániel verfasserin aut Complete Intersection Quiver Settings with One Dimensional Vertices 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract We describe the class of quiver settings with one dimensional vertices whose semi-simple representations are parametrized by a complete intersection variety. We show that these quivers can be reduced to a one vertex quiver with some combinatorial reduction steps. We introduce the notion of descendants which is similar to graph theoretic minors, and show that the class in question can be characterized as the quivers that do not have two specific forbidden descendants. We also prove that the class of coregular quiver settings with arbitrary dimension vector, which has been understood earlier via reduction steps, can also be described as the ones that do not contain a certain forbidden descendant. Quiver settings Complete intersections Representation theory Enthalten in Algebras and representation theory Springer Netherlands, 1998 16(2012), 4 vom: 26. Mai, Seite 1109-1133 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:16 year:2012 number:4 day:26 month:05 pages:1109-1133 https://doi.org/10.1007/s10468-012-9348-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 16 2012 4 26 05 1109-1133 |
spelling |
10.1007/s10468-012-9348-0 doi (DE-627)OLC2036438601 (DE-He213)s10468-012-9348-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Joó, Dániel verfasserin aut Complete Intersection Quiver Settings with One Dimensional Vertices 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract We describe the class of quiver settings with one dimensional vertices whose semi-simple representations are parametrized by a complete intersection variety. We show that these quivers can be reduced to a one vertex quiver with some combinatorial reduction steps. We introduce the notion of descendants which is similar to graph theoretic minors, and show that the class in question can be characterized as the quivers that do not have two specific forbidden descendants. We also prove that the class of coregular quiver settings with arbitrary dimension vector, which has been understood earlier via reduction steps, can also be described as the ones that do not contain a certain forbidden descendant. Quiver settings Complete intersections Representation theory Enthalten in Algebras and representation theory Springer Netherlands, 1998 16(2012), 4 vom: 26. Mai, Seite 1109-1133 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:16 year:2012 number:4 day:26 month:05 pages:1109-1133 https://doi.org/10.1007/s10468-012-9348-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 16 2012 4 26 05 1109-1133 |
allfields_unstemmed |
10.1007/s10468-012-9348-0 doi (DE-627)OLC2036438601 (DE-He213)s10468-012-9348-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Joó, Dániel verfasserin aut Complete Intersection Quiver Settings with One Dimensional Vertices 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract We describe the class of quiver settings with one dimensional vertices whose semi-simple representations are parametrized by a complete intersection variety. We show that these quivers can be reduced to a one vertex quiver with some combinatorial reduction steps. We introduce the notion of descendants which is similar to graph theoretic minors, and show that the class in question can be characterized as the quivers that do not have two specific forbidden descendants. We also prove that the class of coregular quiver settings with arbitrary dimension vector, which has been understood earlier via reduction steps, can also be described as the ones that do not contain a certain forbidden descendant. Quiver settings Complete intersections Representation theory Enthalten in Algebras and representation theory Springer Netherlands, 1998 16(2012), 4 vom: 26. Mai, Seite 1109-1133 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:16 year:2012 number:4 day:26 month:05 pages:1109-1133 https://doi.org/10.1007/s10468-012-9348-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 16 2012 4 26 05 1109-1133 |
allfieldsGer |
10.1007/s10468-012-9348-0 doi (DE-627)OLC2036438601 (DE-He213)s10468-012-9348-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Joó, Dániel verfasserin aut Complete Intersection Quiver Settings with One Dimensional Vertices 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract We describe the class of quiver settings with one dimensional vertices whose semi-simple representations are parametrized by a complete intersection variety. We show that these quivers can be reduced to a one vertex quiver with some combinatorial reduction steps. We introduce the notion of descendants which is similar to graph theoretic minors, and show that the class in question can be characterized as the quivers that do not have two specific forbidden descendants. We also prove that the class of coregular quiver settings with arbitrary dimension vector, which has been understood earlier via reduction steps, can also be described as the ones that do not contain a certain forbidden descendant. Quiver settings Complete intersections Representation theory Enthalten in Algebras and representation theory Springer Netherlands, 1998 16(2012), 4 vom: 26. Mai, Seite 1109-1133 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:16 year:2012 number:4 day:26 month:05 pages:1109-1133 https://doi.org/10.1007/s10468-012-9348-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 16 2012 4 26 05 1109-1133 |
allfieldsSound |
10.1007/s10468-012-9348-0 doi (DE-627)OLC2036438601 (DE-He213)s10468-012-9348-0-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Joó, Dániel verfasserin aut Complete Intersection Quiver Settings with One Dimensional Vertices 2012 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2012 Abstract We describe the class of quiver settings with one dimensional vertices whose semi-simple representations are parametrized by a complete intersection variety. We show that these quivers can be reduced to a one vertex quiver with some combinatorial reduction steps. We introduce the notion of descendants which is similar to graph theoretic minors, and show that the class in question can be characterized as the quivers that do not have two specific forbidden descendants. We also prove that the class of coregular quiver settings with arbitrary dimension vector, which has been understood earlier via reduction steps, can also be described as the ones that do not contain a certain forbidden descendant. Quiver settings Complete intersections Representation theory Enthalten in Algebras and representation theory Springer Netherlands, 1998 16(2012), 4 vom: 26. Mai, Seite 1109-1133 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:16 year:2012 number:4 day:26 month:05 pages:1109-1133 https://doi.org/10.1007/s10468-012-9348-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 16 2012 4 26 05 1109-1133 |
language |
English |
source |
Enthalten in Algebras and representation theory 16(2012), 4 vom: 26. Mai, Seite 1109-1133 volume:16 year:2012 number:4 day:26 month:05 pages:1109-1133 |
sourceStr |
Enthalten in Algebras and representation theory 16(2012), 4 vom: 26. Mai, Seite 1109-1133 volume:16 year:2012 number:4 day:26 month:05 pages:1109-1133 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quiver settings Complete intersections Representation theory |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Algebras and representation theory |
authorswithroles_txt_mv |
Joó, Dániel @@aut@@ |
publishDateDaySort_date |
2012-05-26T00:00:00Z |
hierarchy_top_id |
254285066 |
dewey-sort |
3510 |
id |
OLC2036438601 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036438601</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195802.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10468-012-9348-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036438601</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10468-012-9348-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.21$jGruppentheorie</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Joó, Dániel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complete Intersection Quiver Settings with One Dimensional Vertices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We describe the class of quiver settings with one dimensional vertices whose semi-simple representations are parametrized by a complete intersection variety. We show that these quivers can be reduced to a one vertex quiver with some combinatorial reduction steps. We introduce the notion of descendants which is similar to graph theoretic minors, and show that the class in question can be characterized as the quivers that do not have two specific forbidden descendants. We also prove that the class of coregular quiver settings with arbitrary dimension vector, which has been understood earlier via reduction steps, can also be described as the ones that do not contain a certain forbidden descendant.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quiver settings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complete intersections</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representation theory</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebras and representation theory</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">16(2012), 4 vom: 26. Mai, Seite 1109-1133</subfield><subfield code="w">(DE-627)254285066</subfield><subfield code="w">(DE-600)1463085-0</subfield><subfield code="w">(DE-576)081894716</subfield><subfield code="x">1386-923X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">day:26</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1109-1133</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10468-012-9348-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418971</subfield><subfield code="0">(DE-625)106418971</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.21$jGruppentheorie</subfield><subfield code="q">VZ</subfield><subfield code="0">106408445</subfield><subfield code="0">(DE-625)106408445</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="b">26</subfield><subfield code="c">05</subfield><subfield code="h">1109-1133</subfield></datafield></record></collection>
|
author |
Joó, Dániel |
spellingShingle |
Joó, Dániel ddc 510 ssgn 17,1 bkl 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie misc Quiver settings misc Complete intersections misc Representation theory Complete Intersection Quiver Settings with One Dimensional Vertices |
authorStr |
Joó, Dániel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254285066 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1386-923X |
topic_title |
510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Complete Intersection Quiver Settings with One Dimensional Vertices Quiver settings Complete intersections Representation theory |
topic |
ddc 510 ssgn 17,1 bkl 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie misc Quiver settings misc Complete intersections misc Representation theory |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie misc Quiver settings misc Complete intersections misc Representation theory |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie misc Quiver settings misc Complete intersections misc Representation theory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algebras and representation theory |
hierarchy_parent_id |
254285066 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Algebras and representation theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 |
title |
Complete Intersection Quiver Settings with One Dimensional Vertices |
ctrlnum |
(DE-627)OLC2036438601 (DE-He213)s10468-012-9348-0-p |
title_full |
Complete Intersection Quiver Settings with One Dimensional Vertices |
author_sort |
Joó, Dániel |
journal |
Algebras and representation theory |
journalStr |
Algebras and representation theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
1109 |
author_browse |
Joó, Dániel |
container_volume |
16 |
class |
510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl |
format_se |
Aufsätze |
author-letter |
Joó, Dániel |
doi_str_mv |
10.1007/s10468-012-9348-0 |
normlink |
106418971 106408445 |
normlink_prefix_str_mv |
106418971 (DE-625)106418971 106408445 (DE-625)106408445 |
dewey-full |
510 |
title_sort |
complete intersection quiver settings with one dimensional vertices |
title_auth |
Complete Intersection Quiver Settings with One Dimensional Vertices |
abstract |
Abstract We describe the class of quiver settings with one dimensional vertices whose semi-simple representations are parametrized by a complete intersection variety. We show that these quivers can be reduced to a one vertex quiver with some combinatorial reduction steps. We introduce the notion of descendants which is similar to graph theoretic minors, and show that the class in question can be characterized as the quivers that do not have two specific forbidden descendants. We also prove that the class of coregular quiver settings with arbitrary dimension vector, which has been understood earlier via reduction steps, can also be described as the ones that do not contain a certain forbidden descendant. © Springer Science+Business Media B.V. 2012 |
abstractGer |
Abstract We describe the class of quiver settings with one dimensional vertices whose semi-simple representations are parametrized by a complete intersection variety. We show that these quivers can be reduced to a one vertex quiver with some combinatorial reduction steps. We introduce the notion of descendants which is similar to graph theoretic minors, and show that the class in question can be characterized as the quivers that do not have two specific forbidden descendants. We also prove that the class of coregular quiver settings with arbitrary dimension vector, which has been understood earlier via reduction steps, can also be described as the ones that do not contain a certain forbidden descendant. © Springer Science+Business Media B.V. 2012 |
abstract_unstemmed |
Abstract We describe the class of quiver settings with one dimensional vertices whose semi-simple representations are parametrized by a complete intersection variety. We show that these quivers can be reduced to a one vertex quiver with some combinatorial reduction steps. We introduce the notion of descendants which is similar to graph theoretic minors, and show that the class in question can be characterized as the quivers that do not have two specific forbidden descendants. We also prove that the class of coregular quiver settings with arbitrary dimension vector, which has been understood earlier via reduction steps, can also be described as the ones that do not contain a certain forbidden descendant. © Springer Science+Business Media B.V. 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2088 GBV_ILN_4310 |
container_issue |
4 |
title_short |
Complete Intersection Quiver Settings with One Dimensional Vertices |
url |
https://doi.org/10.1007/s10468-012-9348-0 |
remote_bool |
false |
ppnlink |
254285066 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10468-012-9348-0 |
up_date |
2024-07-04T03:24:33.246Z |
_version_ |
1803617276523446272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036438601</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195802.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2012 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10468-012-9348-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036438601</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10468-012-9348-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.21$jGruppentheorie</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Joó, Dániel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complete Intersection Quiver Settings with One Dimensional Vertices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We describe the class of quiver settings with one dimensional vertices whose semi-simple representations are parametrized by a complete intersection variety. We show that these quivers can be reduced to a one vertex quiver with some combinatorial reduction steps. We introduce the notion of descendants which is similar to graph theoretic minors, and show that the class in question can be characterized as the quivers that do not have two specific forbidden descendants. We also prove that the class of coregular quiver settings with arbitrary dimension vector, which has been understood earlier via reduction steps, can also be described as the ones that do not contain a certain forbidden descendant.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quiver settings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complete intersections</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Representation theory</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebras and representation theory</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">16(2012), 4 vom: 26. Mai, Seite 1109-1133</subfield><subfield code="w">(DE-627)254285066</subfield><subfield code="w">(DE-600)1463085-0</subfield><subfield code="w">(DE-576)081894716</subfield><subfield code="x">1386-923X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:4</subfield><subfield code="g">day:26</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1109-1133</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10468-012-9348-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418971</subfield><subfield code="0">(DE-625)106418971</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.21$jGruppentheorie</subfield><subfield code="q">VZ</subfield><subfield code="0">106408445</subfield><subfield code="0">(DE-625)106408445</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2012</subfield><subfield code="e">4</subfield><subfield code="b">26</subfield><subfield code="c">05</subfield><subfield code="h">1109-1133</subfield></datafield></record></collection>
|
score |
7.401078 |