Extended Local Cohomology and Local Homology
Abstract We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion $\widehat {R}^{\mathcal {a}}$ of a commutative noetherian ring R with respect to a proper ideal $\mathcal {a}$. In particular, we extend Greenlees-May Dual...
Ausführliche Beschreibung
Autor*in: |
Sather-Wagstaff, Sean [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media Dordrecht 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Algebras and representation theory - Springer Netherlands, 1998, 19(2016), 5 vom: 11. Mai, Seite 1217-1238 |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2016 ; number:5 ; day:11 ; month:05 ; pages:1217-1238 |
Links: |
---|
DOI / URN: |
10.1007/s10468-016-9616-5 |
---|
Katalog-ID: |
OLC2036441203 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2036441203 | ||
003 | DE-627 | ||
005 | 20230502195812.0 | ||
007 | tu | ||
008 | 200820s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10468-016-9616-5 |2 doi | |
035 | |a (DE-627)OLC2036441203 | ||
035 | |a (DE-He213)s10468-016-9616-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik |2 bkl | ||
084 | |a 31.21$jGruppentheorie |2 bkl | ||
100 | 1 | |a Sather-Wagstaff, Sean |e verfasserin |4 aut | |
245 | 1 | 0 | |a Extended Local Cohomology and Local Homology |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media Dordrecht 2016 | ||
520 | |a Abstract We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion $\widehat {R}^{\mathcal {a}}$ of a commutative noetherian ring R with respect to a proper ideal $\mathcal {a}$. In particular, we extend Greenlees-May Duality and MGM Equivalence to track behavior over $\widehat {R}^{\mathcal {a}}$, not just over R. We apply this to the study of two recent versions of homological finiteness for complexes, and to certain isomorphisms, with a view toward further applications. We also discuss subtleties and simplifications in the computations of these functors. | ||
650 | 4 | |a Adic finiteness | |
650 | 4 | |a Cohomologically cofinite complexes | |
650 | 4 | |a Derived local cohomology | |
650 | 4 | |a Derived local homology | |
650 | 4 | |a Greenlees-May duality | |
650 | 4 | |a MGM equivalence | |
650 | 4 | |a Support | |
700 | 1 | |a Wicklein, Richard |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Algebras and representation theory |d Springer Netherlands, 1998 |g 19(2016), 5 vom: 11. Mai, Seite 1217-1238 |w (DE-627)254285066 |w (DE-600)1463085-0 |w (DE-576)081894716 |x 1386-923X |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2016 |g number:5 |g day:11 |g month:05 |g pages:1217-1238 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10468-016-9616-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4310 | ||
936 | b | k | |a 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik |q VZ |0 106418971 |0 (DE-625)106418971 |
936 | b | k | |a 31.21$jGruppentheorie |q VZ |0 106408445 |0 (DE-625)106408445 |
951 | |a AR | ||
952 | |d 19 |j 2016 |e 5 |b 11 |c 05 |h 1217-1238 |
author_variant |
s s w ssw r w rw |
---|---|
matchkey_str |
article:1386923X:2016----::xeddoachmlgad |
hierarchy_sort_str |
2016 |
bklnumber |
31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik 31.21$jGruppentheorie |
publishDate |
2016 |
allfields |
10.1007/s10468-016-9616-5 doi (DE-627)OLC2036441203 (DE-He213)s10468-016-9616-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Sather-Wagstaff, Sean verfasserin aut Extended Local Cohomology and Local Homology 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2016 Abstract We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion $\widehat {R}^{\mathcal {a}}$ of a commutative noetherian ring R with respect to a proper ideal $\mathcal {a}$. In particular, we extend Greenlees-May Duality and MGM Equivalence to track behavior over $\widehat {R}^{\mathcal {a}}$, not just over R. We apply this to the study of two recent versions of homological finiteness for complexes, and to certain isomorphisms, with a view toward further applications. We also discuss subtleties and simplifications in the computations of these functors. Adic finiteness Cohomologically cofinite complexes Derived local cohomology Derived local homology Greenlees-May duality MGM equivalence Support Wicklein, Richard aut Enthalten in Algebras and representation theory Springer Netherlands, 1998 19(2016), 5 vom: 11. Mai, Seite 1217-1238 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:19 year:2016 number:5 day:11 month:05 pages:1217-1238 https://doi.org/10.1007/s10468-016-9616-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 19 2016 5 11 05 1217-1238 |
spelling |
10.1007/s10468-016-9616-5 doi (DE-627)OLC2036441203 (DE-He213)s10468-016-9616-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Sather-Wagstaff, Sean verfasserin aut Extended Local Cohomology and Local Homology 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2016 Abstract We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion $\widehat {R}^{\mathcal {a}}$ of a commutative noetherian ring R with respect to a proper ideal $\mathcal {a}$. In particular, we extend Greenlees-May Duality and MGM Equivalence to track behavior over $\widehat {R}^{\mathcal {a}}$, not just over R. We apply this to the study of two recent versions of homological finiteness for complexes, and to certain isomorphisms, with a view toward further applications. We also discuss subtleties and simplifications in the computations of these functors. Adic finiteness Cohomologically cofinite complexes Derived local cohomology Derived local homology Greenlees-May duality MGM equivalence Support Wicklein, Richard aut Enthalten in Algebras and representation theory Springer Netherlands, 1998 19(2016), 5 vom: 11. Mai, Seite 1217-1238 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:19 year:2016 number:5 day:11 month:05 pages:1217-1238 https://doi.org/10.1007/s10468-016-9616-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 19 2016 5 11 05 1217-1238 |
allfields_unstemmed |
10.1007/s10468-016-9616-5 doi (DE-627)OLC2036441203 (DE-He213)s10468-016-9616-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Sather-Wagstaff, Sean verfasserin aut Extended Local Cohomology and Local Homology 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2016 Abstract We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion $\widehat {R}^{\mathcal {a}}$ of a commutative noetherian ring R with respect to a proper ideal $\mathcal {a}$. In particular, we extend Greenlees-May Duality and MGM Equivalence to track behavior over $\widehat {R}^{\mathcal {a}}$, not just over R. We apply this to the study of two recent versions of homological finiteness for complexes, and to certain isomorphisms, with a view toward further applications. We also discuss subtleties and simplifications in the computations of these functors. Adic finiteness Cohomologically cofinite complexes Derived local cohomology Derived local homology Greenlees-May duality MGM equivalence Support Wicklein, Richard aut Enthalten in Algebras and representation theory Springer Netherlands, 1998 19(2016), 5 vom: 11. Mai, Seite 1217-1238 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:19 year:2016 number:5 day:11 month:05 pages:1217-1238 https://doi.org/10.1007/s10468-016-9616-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 19 2016 5 11 05 1217-1238 |
allfieldsGer |
10.1007/s10468-016-9616-5 doi (DE-627)OLC2036441203 (DE-He213)s10468-016-9616-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Sather-Wagstaff, Sean verfasserin aut Extended Local Cohomology and Local Homology 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2016 Abstract We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion $\widehat {R}^{\mathcal {a}}$ of a commutative noetherian ring R with respect to a proper ideal $\mathcal {a}$. In particular, we extend Greenlees-May Duality and MGM Equivalence to track behavior over $\widehat {R}^{\mathcal {a}}$, not just over R. We apply this to the study of two recent versions of homological finiteness for complexes, and to certain isomorphisms, with a view toward further applications. We also discuss subtleties and simplifications in the computations of these functors. Adic finiteness Cohomologically cofinite complexes Derived local cohomology Derived local homology Greenlees-May duality MGM equivalence Support Wicklein, Richard aut Enthalten in Algebras and representation theory Springer Netherlands, 1998 19(2016), 5 vom: 11. Mai, Seite 1217-1238 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:19 year:2016 number:5 day:11 month:05 pages:1217-1238 https://doi.org/10.1007/s10468-016-9616-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 19 2016 5 11 05 1217-1238 |
allfieldsSound |
10.1007/s10468-016-9616-5 doi (DE-627)OLC2036441203 (DE-He213)s10468-016-9616-5-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Sather-Wagstaff, Sean verfasserin aut Extended Local Cohomology and Local Homology 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media Dordrecht 2016 Abstract We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion $\widehat {R}^{\mathcal {a}}$ of a commutative noetherian ring R with respect to a proper ideal $\mathcal {a}$. In particular, we extend Greenlees-May Duality and MGM Equivalence to track behavior over $\widehat {R}^{\mathcal {a}}$, not just over R. We apply this to the study of two recent versions of homological finiteness for complexes, and to certain isomorphisms, with a view toward further applications. We also discuss subtleties and simplifications in the computations of these functors. Adic finiteness Cohomologically cofinite complexes Derived local cohomology Derived local homology Greenlees-May duality MGM equivalence Support Wicklein, Richard aut Enthalten in Algebras and representation theory Springer Netherlands, 1998 19(2016), 5 vom: 11. Mai, Seite 1217-1238 (DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 1386-923X nnns volume:19 year:2016 number:5 day:11 month:05 pages:1217-1238 https://doi.org/10.1007/s10468-016-9616-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 GBV_ILN_4310 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik VZ 106418971 (DE-625)106418971 31.21$jGruppentheorie VZ 106408445 (DE-625)106408445 AR 19 2016 5 11 05 1217-1238 |
language |
English |
source |
Enthalten in Algebras and representation theory 19(2016), 5 vom: 11. Mai, Seite 1217-1238 volume:19 year:2016 number:5 day:11 month:05 pages:1217-1238 |
sourceStr |
Enthalten in Algebras and representation theory 19(2016), 5 vom: 11. Mai, Seite 1217-1238 volume:19 year:2016 number:5 day:11 month:05 pages:1217-1238 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Adic finiteness Cohomologically cofinite complexes Derived local cohomology Derived local homology Greenlees-May duality MGM equivalence Support |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Algebras and representation theory |
authorswithroles_txt_mv |
Sather-Wagstaff, Sean @@aut@@ Wicklein, Richard @@aut@@ |
publishDateDaySort_date |
2016-05-11T00:00:00Z |
hierarchy_top_id |
254285066 |
dewey-sort |
3510 |
id |
OLC2036441203 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036441203</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195812.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10468-016-9616-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036441203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10468-016-9616-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.21$jGruppentheorie</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sather-Wagstaff, Sean</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extended Local Cohomology and Local Homology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion $\widehat {R}^{\mathcal {a}}$ of a commutative noetherian ring R with respect to a proper ideal $\mathcal {a}$. In particular, we extend Greenlees-May Duality and MGM Equivalence to track behavior over $\widehat {R}^{\mathcal {a}}$, not just over R. We apply this to the study of two recent versions of homological finiteness for complexes, and to certain isomorphisms, with a view toward further applications. We also discuss subtleties and simplifications in the computations of these functors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adic finiteness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohomologically cofinite complexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Derived local cohomology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Derived local homology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Greenlees-May duality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MGM equivalence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Support</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wicklein, Richard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebras and representation theory</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">19(2016), 5 vom: 11. Mai, Seite 1217-1238</subfield><subfield code="w">(DE-627)254285066</subfield><subfield code="w">(DE-600)1463085-0</subfield><subfield code="w">(DE-576)081894716</subfield><subfield code="x">1386-923X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">day:11</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1217-1238</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10468-016-9616-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418971</subfield><subfield code="0">(DE-625)106418971</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.21$jGruppentheorie</subfield><subfield code="q">VZ</subfield><subfield code="0">106408445</subfield><subfield code="0">(DE-625)106408445</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="b">11</subfield><subfield code="c">05</subfield><subfield code="h">1217-1238</subfield></datafield></record></collection>
|
author |
Sather-Wagstaff, Sean |
spellingShingle |
Sather-Wagstaff, Sean ddc 510 ssgn 17,1 bkl 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie misc Adic finiteness misc Cohomologically cofinite complexes misc Derived local cohomology misc Derived local homology misc Greenlees-May duality misc MGM equivalence misc Support Extended Local Cohomology and Local Homology |
authorStr |
Sather-Wagstaff, Sean |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254285066 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1386-923X |
topic_title |
510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl Extended Local Cohomology and Local Homology Adic finiteness Cohomologically cofinite complexes Derived local cohomology Derived local homology Greenlees-May duality MGM equivalence Support |
topic |
ddc 510 ssgn 17,1 bkl 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie misc Adic finiteness misc Cohomologically cofinite complexes misc Derived local cohomology misc Derived local homology misc Greenlees-May duality misc MGM equivalence misc Support |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie misc Adic finiteness misc Cohomologically cofinite complexes misc Derived local cohomology misc Derived local homology misc Greenlees-May duality misc MGM equivalence misc Support |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie misc Adic finiteness misc Cohomologically cofinite complexes misc Derived local cohomology misc Derived local homology misc Greenlees-May duality misc MGM equivalence misc Support |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Algebras and representation theory |
hierarchy_parent_id |
254285066 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Algebras and representation theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254285066 (DE-600)1463085-0 (DE-576)081894716 |
title |
Extended Local Cohomology and Local Homology |
ctrlnum |
(DE-627)OLC2036441203 (DE-He213)s10468-016-9616-5-p |
title_full |
Extended Local Cohomology and Local Homology |
author_sort |
Sather-Wagstaff, Sean |
journal |
Algebras and representation theory |
journalStr |
Algebras and representation theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1217 |
author_browse |
Sather-Wagstaff, Sean Wicklein, Richard |
container_volume |
19 |
class |
510 VZ 17,1 ssgn 31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik bkl 31.21$jGruppentheorie bkl |
format_se |
Aufsätze |
author-letter |
Sather-Wagstaff, Sean |
doi_str_mv |
10.1007/s10468-016-9616-5 |
normlink |
106418971 106408445 |
normlink_prefix_str_mv |
106418971 (DE-625)106418971 106408445 (DE-625)106408445 |
dewey-full |
510 |
title_sort |
extended local cohomology and local homology |
title_auth |
Extended Local Cohomology and Local Homology |
abstract |
Abstract We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion $\widehat {R}^{\mathcal {a}}$ of a commutative noetherian ring R with respect to a proper ideal $\mathcal {a}$. In particular, we extend Greenlees-May Duality and MGM Equivalence to track behavior over $\widehat {R}^{\mathcal {a}}$, not just over R. We apply this to the study of two recent versions of homological finiteness for complexes, and to certain isomorphisms, with a view toward further applications. We also discuss subtleties and simplifications in the computations of these functors. © Springer Science+Business Media Dordrecht 2016 |
abstractGer |
Abstract We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion $\widehat {R}^{\mathcal {a}}$ of a commutative noetherian ring R with respect to a proper ideal $\mathcal {a}$. In particular, we extend Greenlees-May Duality and MGM Equivalence to track behavior over $\widehat {R}^{\mathcal {a}}$, not just over R. We apply this to the study of two recent versions of homological finiteness for complexes, and to certain isomorphisms, with a view toward further applications. We also discuss subtleties and simplifications in the computations of these functors. © Springer Science+Business Media Dordrecht 2016 |
abstract_unstemmed |
Abstract We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion $\widehat {R}^{\mathcal {a}}$ of a commutative noetherian ring R with respect to a proper ideal $\mathcal {a}$. In particular, we extend Greenlees-May Duality and MGM Equivalence to track behavior over $\widehat {R}^{\mathcal {a}}$, not just over R. We apply this to the study of two recent versions of homological finiteness for complexes, and to certain isomorphisms, with a view toward further applications. We also discuss subtleties and simplifications in the computations of these functors. © Springer Science+Business Media Dordrecht 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2088 GBV_ILN_4310 |
container_issue |
5 |
title_short |
Extended Local Cohomology and Local Homology |
url |
https://doi.org/10.1007/s10468-016-9616-5 |
remote_bool |
false |
author2 |
Wicklein, Richard |
author2Str |
Wicklein, Richard |
ppnlink |
254285066 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10468-016-9616-5 |
up_date |
2024-07-04T03:24:52.642Z |
_version_ |
1803617296877355008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036441203</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502195812.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10468-016-9616-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036441203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10468-016-9616-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.21$jGruppentheorie</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sather-Wagstaff, Sean</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extended Local Cohomology and Local Homology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media Dordrecht 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We present an in-depth exploration of the module structures of local (co)homology modules (moreover, for complexes) over the completion $\widehat {R}^{\mathcal {a}}$ of a commutative noetherian ring R with respect to a proper ideal $\mathcal {a}$. In particular, we extend Greenlees-May Duality and MGM Equivalence to track behavior over $\widehat {R}^{\mathcal {a}}$, not just over R. We apply this to the study of two recent versions of homological finiteness for complexes, and to certain isomorphisms, with a view toward further applications. We also discuss subtleties and simplifications in the computations of these functors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adic finiteness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohomologically cofinite complexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Derived local cohomology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Derived local homology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Greenlees-May duality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MGM equivalence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Support</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wicklein, Richard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Algebras and representation theory</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">19(2016), 5 vom: 11. Mai, Seite 1217-1238</subfield><subfield code="w">(DE-627)254285066</subfield><subfield code="w">(DE-600)1463085-0</subfield><subfield code="w">(DE-576)081894716</subfield><subfield code="x">1386-923X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">day:11</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1217-1238</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10468-016-9616-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.23$jIdeale$jRinge$jModuln$jAlgebren$XMathematik</subfield><subfield code="q">VZ</subfield><subfield code="0">106418971</subfield><subfield code="0">(DE-625)106418971</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.21$jGruppentheorie</subfield><subfield code="q">VZ</subfield><subfield code="0">106408445</subfield><subfield code="0">(DE-625)106408445</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="b">11</subfield><subfield code="c">05</subfield><subfield code="h">1217-1238</subfield></datafield></record></collection>
|
score |
7.40149 |