A note on the role of dilatation in the fracture of viscoelastic elastomer
Abstract Fracture models addressing crack propagation in viscoelastic materials typically draw on cohesive force distributions coupled with a linearly viscoelastic constitutive material description. While the resulting formulation of the crack speed as a function of applied loads provides good agree...
Ausführliche Beschreibung
Autor*in: |
Knauss, W. G. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media B.V. 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of fracture - Springer Netherlands, 1973, 171(2011), 2 vom: Okt., Seite 99-104 |
---|---|
Übergeordnetes Werk: |
volume:171 ; year:2011 ; number:2 ; month:10 ; pages:99-104 |
Links: |
---|
DOI / URN: |
10.1007/s10704-011-9629-3 |
---|
Katalog-ID: |
OLC203662135X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC203662135X | ||
003 | DE-627 | ||
005 | 20230503062432.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10704-011-9629-3 |2 doi | |
035 | |a (DE-627)OLC203662135X | ||
035 | |a (DE-He213)s10704-011-9629-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 600 |a 670 |q VZ |
100 | 1 | |a Knauss, W. G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A note on the role of dilatation in the fracture of viscoelastic elastomer |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media B.V. 2011 | ||
520 | |a Abstract Fracture models addressing crack propagation in viscoelastic materials typically draw on cohesive force distributions coupled with a linearly viscoelastic constitutive material description. While the resulting formulation of the crack speed as a function of applied loads provides good agreement with measurements on polyurethane rubber as well as three other rubbery solids studied by A. N. Gent on the more global scale, the size of the cohesive zone required to match theory and measurements is unreasonably small. Although this glaring discrepancy has not deterred the use of the theory for viscoelastic fracture, it has remained a troublesome question on the wider applications to polymer fracture. The present note revisits this issue and draws on results developed during the past decade to explain this discrepancy via the effect of stress-induced dilatation on the relaxation or retardation times of viscoelastic solids. | ||
650 | 4 | |a Viscoelasticity | |
650 | 4 | |a Cohesive zone size | |
650 | 4 | |a Viscoelastic crack propagation | |
650 | 4 | |a Viscoelastic fracture mechanics | |
773 | 0 | 8 | |i Enthalten in |t International journal of fracture |d Springer Netherlands, 1973 |g 171(2011), 2 vom: Okt., Seite 99-104 |w (DE-627)129399345 |w (DE-600)186249-2 |w (DE-576)014782154 |x 0376-9429 |7 nnns |
773 | 1 | 8 | |g volume:171 |g year:2011 |g number:2 |g month:10 |g pages:99-104 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10704-011-9629-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 171 |j 2011 |e 2 |c 10 |h 99-104 |
author_variant |
w g k wg wgk |
---|---|
matchkey_str |
article:03769429:2011----::ntoteoefiaainnhfatrovs |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s10704-011-9629-3 doi (DE-627)OLC203662135X (DE-He213)s10704-011-9629-3-p DE-627 ger DE-627 rakwb eng 530 600 670 VZ Knauss, W. G. verfasserin aut A note on the role of dilatation in the fracture of viscoelastic elastomer 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Fracture models addressing crack propagation in viscoelastic materials typically draw on cohesive force distributions coupled with a linearly viscoelastic constitutive material description. While the resulting formulation of the crack speed as a function of applied loads provides good agreement with measurements on polyurethane rubber as well as three other rubbery solids studied by A. N. Gent on the more global scale, the size of the cohesive zone required to match theory and measurements is unreasonably small. Although this glaring discrepancy has not deterred the use of the theory for viscoelastic fracture, it has remained a troublesome question on the wider applications to polymer fracture. The present note revisits this issue and draws on results developed during the past decade to explain this discrepancy via the effect of stress-induced dilatation on the relaxation or retardation times of viscoelastic solids. Viscoelasticity Cohesive zone size Viscoelastic crack propagation Viscoelastic fracture mechanics Enthalten in International journal of fracture Springer Netherlands, 1973 171(2011), 2 vom: Okt., Seite 99-104 (DE-627)129399345 (DE-600)186249-2 (DE-576)014782154 0376-9429 nnns volume:171 year:2011 number:2 month:10 pages:99-104 https://doi.org/10.1007/s10704-011-9629-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_4700 AR 171 2011 2 10 99-104 |
spelling |
10.1007/s10704-011-9629-3 doi (DE-627)OLC203662135X (DE-He213)s10704-011-9629-3-p DE-627 ger DE-627 rakwb eng 530 600 670 VZ Knauss, W. G. verfasserin aut A note on the role of dilatation in the fracture of viscoelastic elastomer 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Fracture models addressing crack propagation in viscoelastic materials typically draw on cohesive force distributions coupled with a linearly viscoelastic constitutive material description. While the resulting formulation of the crack speed as a function of applied loads provides good agreement with measurements on polyurethane rubber as well as three other rubbery solids studied by A. N. Gent on the more global scale, the size of the cohesive zone required to match theory and measurements is unreasonably small. Although this glaring discrepancy has not deterred the use of the theory for viscoelastic fracture, it has remained a troublesome question on the wider applications to polymer fracture. The present note revisits this issue and draws on results developed during the past decade to explain this discrepancy via the effect of stress-induced dilatation on the relaxation or retardation times of viscoelastic solids. Viscoelasticity Cohesive zone size Viscoelastic crack propagation Viscoelastic fracture mechanics Enthalten in International journal of fracture Springer Netherlands, 1973 171(2011), 2 vom: Okt., Seite 99-104 (DE-627)129399345 (DE-600)186249-2 (DE-576)014782154 0376-9429 nnns volume:171 year:2011 number:2 month:10 pages:99-104 https://doi.org/10.1007/s10704-011-9629-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_4700 AR 171 2011 2 10 99-104 |
allfields_unstemmed |
10.1007/s10704-011-9629-3 doi (DE-627)OLC203662135X (DE-He213)s10704-011-9629-3-p DE-627 ger DE-627 rakwb eng 530 600 670 VZ Knauss, W. G. verfasserin aut A note on the role of dilatation in the fracture of viscoelastic elastomer 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Fracture models addressing crack propagation in viscoelastic materials typically draw on cohesive force distributions coupled with a linearly viscoelastic constitutive material description. While the resulting formulation of the crack speed as a function of applied loads provides good agreement with measurements on polyurethane rubber as well as three other rubbery solids studied by A. N. Gent on the more global scale, the size of the cohesive zone required to match theory and measurements is unreasonably small. Although this glaring discrepancy has not deterred the use of the theory for viscoelastic fracture, it has remained a troublesome question on the wider applications to polymer fracture. The present note revisits this issue and draws on results developed during the past decade to explain this discrepancy via the effect of stress-induced dilatation on the relaxation or retardation times of viscoelastic solids. Viscoelasticity Cohesive zone size Viscoelastic crack propagation Viscoelastic fracture mechanics Enthalten in International journal of fracture Springer Netherlands, 1973 171(2011), 2 vom: Okt., Seite 99-104 (DE-627)129399345 (DE-600)186249-2 (DE-576)014782154 0376-9429 nnns volume:171 year:2011 number:2 month:10 pages:99-104 https://doi.org/10.1007/s10704-011-9629-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_4700 AR 171 2011 2 10 99-104 |
allfieldsGer |
10.1007/s10704-011-9629-3 doi (DE-627)OLC203662135X (DE-He213)s10704-011-9629-3-p DE-627 ger DE-627 rakwb eng 530 600 670 VZ Knauss, W. G. verfasserin aut A note on the role of dilatation in the fracture of viscoelastic elastomer 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Fracture models addressing crack propagation in viscoelastic materials typically draw on cohesive force distributions coupled with a linearly viscoelastic constitutive material description. While the resulting formulation of the crack speed as a function of applied loads provides good agreement with measurements on polyurethane rubber as well as three other rubbery solids studied by A. N. Gent on the more global scale, the size of the cohesive zone required to match theory and measurements is unreasonably small. Although this glaring discrepancy has not deterred the use of the theory for viscoelastic fracture, it has remained a troublesome question on the wider applications to polymer fracture. The present note revisits this issue and draws on results developed during the past decade to explain this discrepancy via the effect of stress-induced dilatation on the relaxation or retardation times of viscoelastic solids. Viscoelasticity Cohesive zone size Viscoelastic crack propagation Viscoelastic fracture mechanics Enthalten in International journal of fracture Springer Netherlands, 1973 171(2011), 2 vom: Okt., Seite 99-104 (DE-627)129399345 (DE-600)186249-2 (DE-576)014782154 0376-9429 nnns volume:171 year:2011 number:2 month:10 pages:99-104 https://doi.org/10.1007/s10704-011-9629-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_4700 AR 171 2011 2 10 99-104 |
allfieldsSound |
10.1007/s10704-011-9629-3 doi (DE-627)OLC203662135X (DE-He213)s10704-011-9629-3-p DE-627 ger DE-627 rakwb eng 530 600 670 VZ Knauss, W. G. verfasserin aut A note on the role of dilatation in the fracture of viscoelastic elastomer 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media B.V. 2011 Abstract Fracture models addressing crack propagation in viscoelastic materials typically draw on cohesive force distributions coupled with a linearly viscoelastic constitutive material description. While the resulting formulation of the crack speed as a function of applied loads provides good agreement with measurements on polyurethane rubber as well as three other rubbery solids studied by A. N. Gent on the more global scale, the size of the cohesive zone required to match theory and measurements is unreasonably small. Although this glaring discrepancy has not deterred the use of the theory for viscoelastic fracture, it has remained a troublesome question on the wider applications to polymer fracture. The present note revisits this issue and draws on results developed during the past decade to explain this discrepancy via the effect of stress-induced dilatation on the relaxation or retardation times of viscoelastic solids. Viscoelasticity Cohesive zone size Viscoelastic crack propagation Viscoelastic fracture mechanics Enthalten in International journal of fracture Springer Netherlands, 1973 171(2011), 2 vom: Okt., Seite 99-104 (DE-627)129399345 (DE-600)186249-2 (DE-576)014782154 0376-9429 nnns volume:171 year:2011 number:2 month:10 pages:99-104 https://doi.org/10.1007/s10704-011-9629-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_4700 AR 171 2011 2 10 99-104 |
language |
English |
source |
Enthalten in International journal of fracture 171(2011), 2 vom: Okt., Seite 99-104 volume:171 year:2011 number:2 month:10 pages:99-104 |
sourceStr |
Enthalten in International journal of fracture 171(2011), 2 vom: Okt., Seite 99-104 volume:171 year:2011 number:2 month:10 pages:99-104 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Viscoelasticity Cohesive zone size Viscoelastic crack propagation Viscoelastic fracture mechanics |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of fracture |
authorswithroles_txt_mv |
Knauss, W. G. @@aut@@ |
publishDateDaySort_date |
2011-10-01T00:00:00Z |
hierarchy_top_id |
129399345 |
dewey-sort |
3530 |
id |
OLC203662135X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203662135X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503062432.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10704-011-9629-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203662135X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10704-011-9629-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knauss, W. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A note on the role of dilatation in the fracture of viscoelastic elastomer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Fracture models addressing crack propagation in viscoelastic materials typically draw on cohesive force distributions coupled with a linearly viscoelastic constitutive material description. While the resulting formulation of the crack speed as a function of applied loads provides good agreement with measurements on polyurethane rubber as well as three other rubbery solids studied by A. N. Gent on the more global scale, the size of the cohesive zone required to match theory and measurements is unreasonably small. Although this glaring discrepancy has not deterred the use of the theory for viscoelastic fracture, it has remained a troublesome question on the wider applications to polymer fracture. The present note revisits this issue and draws on results developed during the past decade to explain this discrepancy via the effect of stress-induced dilatation on the relaxation or retardation times of viscoelastic solids.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohesive zone size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic crack propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic fracture mechanics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of fracture</subfield><subfield code="d">Springer Netherlands, 1973</subfield><subfield code="g">171(2011), 2 vom: Okt., Seite 99-104</subfield><subfield code="w">(DE-627)129399345</subfield><subfield code="w">(DE-600)186249-2</subfield><subfield code="w">(DE-576)014782154</subfield><subfield code="x">0376-9429</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:171</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:99-104</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10704-011-9629-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">171</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="c">10</subfield><subfield code="h">99-104</subfield></datafield></record></collection>
|
author |
Knauss, W. G. |
spellingShingle |
Knauss, W. G. ddc 530 misc Viscoelasticity misc Cohesive zone size misc Viscoelastic crack propagation misc Viscoelastic fracture mechanics A note on the role of dilatation in the fracture of viscoelastic elastomer |
authorStr |
Knauss, W. G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129399345 |
format |
Article |
dewey-ones |
530 - Physics 600 - Technology 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0376-9429 |
topic_title |
530 600 670 VZ A note on the role of dilatation in the fracture of viscoelastic elastomer Viscoelasticity Cohesive zone size Viscoelastic crack propagation Viscoelastic fracture mechanics |
topic |
ddc 530 misc Viscoelasticity misc Cohesive zone size misc Viscoelastic crack propagation misc Viscoelastic fracture mechanics |
topic_unstemmed |
ddc 530 misc Viscoelasticity misc Cohesive zone size misc Viscoelastic crack propagation misc Viscoelastic fracture mechanics |
topic_browse |
ddc 530 misc Viscoelasticity misc Cohesive zone size misc Viscoelastic crack propagation misc Viscoelastic fracture mechanics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of fracture |
hierarchy_parent_id |
129399345 |
dewey-tens |
530 - Physics 600 - Technology 670 - Manufacturing |
hierarchy_top_title |
International journal of fracture |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129399345 (DE-600)186249-2 (DE-576)014782154 |
title |
A note on the role of dilatation in the fracture of viscoelastic elastomer |
ctrlnum |
(DE-627)OLC203662135X (DE-He213)s10704-011-9629-3-p |
title_full |
A note on the role of dilatation in the fracture of viscoelastic elastomer |
author_sort |
Knauss, W. G. |
journal |
International journal of fracture |
journalStr |
International journal of fracture |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
99 |
author_browse |
Knauss, W. G. |
container_volume |
171 |
class |
530 600 670 VZ |
format_se |
Aufsätze |
author-letter |
Knauss, W. G. |
doi_str_mv |
10.1007/s10704-011-9629-3 |
dewey-full |
530 600 670 |
title_sort |
a note on the role of dilatation in the fracture of viscoelastic elastomer |
title_auth |
A note on the role of dilatation in the fracture of viscoelastic elastomer |
abstract |
Abstract Fracture models addressing crack propagation in viscoelastic materials typically draw on cohesive force distributions coupled with a linearly viscoelastic constitutive material description. While the resulting formulation of the crack speed as a function of applied loads provides good agreement with measurements on polyurethane rubber as well as three other rubbery solids studied by A. N. Gent on the more global scale, the size of the cohesive zone required to match theory and measurements is unreasonably small. Although this glaring discrepancy has not deterred the use of the theory for viscoelastic fracture, it has remained a troublesome question on the wider applications to polymer fracture. The present note revisits this issue and draws on results developed during the past decade to explain this discrepancy via the effect of stress-induced dilatation on the relaxation or retardation times of viscoelastic solids. © Springer Science+Business Media B.V. 2011 |
abstractGer |
Abstract Fracture models addressing crack propagation in viscoelastic materials typically draw on cohesive force distributions coupled with a linearly viscoelastic constitutive material description. While the resulting formulation of the crack speed as a function of applied loads provides good agreement with measurements on polyurethane rubber as well as three other rubbery solids studied by A. N. Gent on the more global scale, the size of the cohesive zone required to match theory and measurements is unreasonably small. Although this glaring discrepancy has not deterred the use of the theory for viscoelastic fracture, it has remained a troublesome question on the wider applications to polymer fracture. The present note revisits this issue and draws on results developed during the past decade to explain this discrepancy via the effect of stress-induced dilatation on the relaxation or retardation times of viscoelastic solids. © Springer Science+Business Media B.V. 2011 |
abstract_unstemmed |
Abstract Fracture models addressing crack propagation in viscoelastic materials typically draw on cohesive force distributions coupled with a linearly viscoelastic constitutive material description. While the resulting formulation of the crack speed as a function of applied loads provides good agreement with measurements on polyurethane rubber as well as three other rubbery solids studied by A. N. Gent on the more global scale, the size of the cohesive zone required to match theory and measurements is unreasonably small. Although this glaring discrepancy has not deterred the use of the theory for viscoelastic fracture, it has remained a troublesome question on the wider applications to polymer fracture. The present note revisits this issue and draws on results developed during the past decade to explain this discrepancy via the effect of stress-induced dilatation on the relaxation or retardation times of viscoelastic solids. © Springer Science+Business Media B.V. 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_70 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_2016 GBV_ILN_4700 |
container_issue |
2 |
title_short |
A note on the role of dilatation in the fracture of viscoelastic elastomer |
url |
https://doi.org/10.1007/s10704-011-9629-3 |
remote_bool |
false |
ppnlink |
129399345 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10704-011-9629-3 |
up_date |
2024-07-04T03:47:55.207Z |
_version_ |
1803618746586103808 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203662135X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503062432.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10704-011-9629-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203662135X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10704-011-9629-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knauss, W. G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A note on the role of dilatation in the fracture of viscoelastic elastomer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media B.V. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Fracture models addressing crack propagation in viscoelastic materials typically draw on cohesive force distributions coupled with a linearly viscoelastic constitutive material description. While the resulting formulation of the crack speed as a function of applied loads provides good agreement with measurements on polyurethane rubber as well as three other rubbery solids studied by A. N. Gent on the more global scale, the size of the cohesive zone required to match theory and measurements is unreasonably small. Although this glaring discrepancy has not deterred the use of the theory for viscoelastic fracture, it has remained a troublesome question on the wider applications to polymer fracture. The present note revisits this issue and draws on results developed during the past decade to explain this discrepancy via the effect of stress-induced dilatation on the relaxation or retardation times of viscoelastic solids.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelasticity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohesive zone size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic crack propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic fracture mechanics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of fracture</subfield><subfield code="d">Springer Netherlands, 1973</subfield><subfield code="g">171(2011), 2 vom: Okt., Seite 99-104</subfield><subfield code="w">(DE-627)129399345</subfield><subfield code="w">(DE-600)186249-2</subfield><subfield code="w">(DE-576)014782154</subfield><subfield code="x">0376-9429</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:171</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:99-104</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10704-011-9629-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">171</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="c">10</subfield><subfield code="h">99-104</subfield></datafield></record></collection>
|
score |
7.401457 |