Mott–Hubbard Insulator in Infinite Dimensions
Abstract We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show...
Ausführliche Beschreibung
Autor*in: |
Kalinowski, Eva [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2002 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Plenum Publishing Corporation 2002 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of low temperature physics - Kluwer Academic Publishers-Plenum Publishers, 1969, 126(2002), 3-4 vom: Feb., Seite 979-1007 |
---|---|
Übergeordnetes Werk: |
volume:126 ; year:2002 ; number:3-4 ; month:02 ; pages:979-1007 |
Links: |
---|
DOI / URN: |
10.1023/A:1013802910383 |
---|
Katalog-ID: |
OLC2036793169 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2036793169 | ||
003 | DE-627 | ||
005 | 20230503143326.0 | ||
007 | tu | ||
008 | 200819s2002 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1013802910383 |2 doi | |
035 | |a (DE-627)OLC2036793169 | ||
035 | |a (DE-He213)A:1013802910383-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Kalinowski, Eva |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mott–Hubbard Insulator in Infinite Dimensions |
264 | 1 | |c 2002 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Plenum Publishing Corporation 2002 | ||
520 | |a Abstract We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show that the Green function for the lower Hubbard band can be expressed in terms of polynomials in the bare hole-hopping operator. We check our technique against the exact solution of the Falicov–Kimball model and give explicit results up to and including second order in the inverse Hubbard interaction. Our results provide a stringent test for analytical and numerical investigations of the Mott–Hubbard insulator and the Mott–Hubbard transition within the dynamical mean-field theory. We find that the Hubbard-III approximation is not satisfactory beyond lowest order, but the local-moment approach provides a very good description of the Mott–Hubbard insulator at strong coupling. | ||
650 | 4 | |a Green Function | |
650 | 4 | |a Kato | |
650 | 4 | |a Hubbard Model | |
650 | 4 | |a Stringent Test | |
650 | 4 | |a Explicit Result | |
700 | 1 | |a Gebhard, Florian |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of low temperature physics |d Kluwer Academic Publishers-Plenum Publishers, 1969 |g 126(2002), 3-4 vom: Feb., Seite 979-1007 |w (DE-627)129546267 |w (DE-600)218311-0 |w (DE-576)014996642 |x 0022-2291 |7 nnns |
773 | 1 | 8 | |g volume:126 |g year:2002 |g number:3-4 |g month:02 |g pages:979-1007 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1013802910383 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2185 | ||
912 | |a GBV_ILN_4082 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 126 |j 2002 |e 3-4 |c 02 |h 979-1007 |
author_variant |
e k ek f g fg |
---|---|
matchkey_str |
article:00222291:2002----::otubrisltrnniie |
hierarchy_sort_str |
2002 |
publishDate |
2002 |
allfields |
10.1023/A:1013802910383 doi (DE-627)OLC2036793169 (DE-He213)A:1013802910383-p DE-627 ger DE-627 rakwb eng 530 VZ Kalinowski, Eva verfasserin aut Mott–Hubbard Insulator in Infinite Dimensions 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2002 Abstract We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show that the Green function for the lower Hubbard band can be expressed in terms of polynomials in the bare hole-hopping operator. We check our technique against the exact solution of the Falicov–Kimball model and give explicit results up to and including second order in the inverse Hubbard interaction. Our results provide a stringent test for analytical and numerical investigations of the Mott–Hubbard insulator and the Mott–Hubbard transition within the dynamical mean-field theory. We find that the Hubbard-III approximation is not satisfactory beyond lowest order, but the local-moment approach provides a very good description of the Mott–Hubbard insulator at strong coupling. Green Function Kato Hubbard Model Stringent Test Explicit Result Gebhard, Florian aut Enthalten in Journal of low temperature physics Kluwer Academic Publishers-Plenum Publishers, 1969 126(2002), 3-4 vom: Feb., Seite 979-1007 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:126 year:2002 number:3-4 month:02 pages:979-1007 https://doi.org/10.1023/A:1013802910383 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4323 GBV_ILN_4700 AR 126 2002 3-4 02 979-1007 |
spelling |
10.1023/A:1013802910383 doi (DE-627)OLC2036793169 (DE-He213)A:1013802910383-p DE-627 ger DE-627 rakwb eng 530 VZ Kalinowski, Eva verfasserin aut Mott–Hubbard Insulator in Infinite Dimensions 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2002 Abstract We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show that the Green function for the lower Hubbard band can be expressed in terms of polynomials in the bare hole-hopping operator. We check our technique against the exact solution of the Falicov–Kimball model and give explicit results up to and including second order in the inverse Hubbard interaction. Our results provide a stringent test for analytical and numerical investigations of the Mott–Hubbard insulator and the Mott–Hubbard transition within the dynamical mean-field theory. We find that the Hubbard-III approximation is not satisfactory beyond lowest order, but the local-moment approach provides a very good description of the Mott–Hubbard insulator at strong coupling. Green Function Kato Hubbard Model Stringent Test Explicit Result Gebhard, Florian aut Enthalten in Journal of low temperature physics Kluwer Academic Publishers-Plenum Publishers, 1969 126(2002), 3-4 vom: Feb., Seite 979-1007 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:126 year:2002 number:3-4 month:02 pages:979-1007 https://doi.org/10.1023/A:1013802910383 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4323 GBV_ILN_4700 AR 126 2002 3-4 02 979-1007 |
allfields_unstemmed |
10.1023/A:1013802910383 doi (DE-627)OLC2036793169 (DE-He213)A:1013802910383-p DE-627 ger DE-627 rakwb eng 530 VZ Kalinowski, Eva verfasserin aut Mott–Hubbard Insulator in Infinite Dimensions 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2002 Abstract We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show that the Green function for the lower Hubbard band can be expressed in terms of polynomials in the bare hole-hopping operator. We check our technique against the exact solution of the Falicov–Kimball model and give explicit results up to and including second order in the inverse Hubbard interaction. Our results provide a stringent test for analytical and numerical investigations of the Mott–Hubbard insulator and the Mott–Hubbard transition within the dynamical mean-field theory. We find that the Hubbard-III approximation is not satisfactory beyond lowest order, but the local-moment approach provides a very good description of the Mott–Hubbard insulator at strong coupling. Green Function Kato Hubbard Model Stringent Test Explicit Result Gebhard, Florian aut Enthalten in Journal of low temperature physics Kluwer Academic Publishers-Plenum Publishers, 1969 126(2002), 3-4 vom: Feb., Seite 979-1007 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:126 year:2002 number:3-4 month:02 pages:979-1007 https://doi.org/10.1023/A:1013802910383 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4323 GBV_ILN_4700 AR 126 2002 3-4 02 979-1007 |
allfieldsGer |
10.1023/A:1013802910383 doi (DE-627)OLC2036793169 (DE-He213)A:1013802910383-p DE-627 ger DE-627 rakwb eng 530 VZ Kalinowski, Eva verfasserin aut Mott–Hubbard Insulator in Infinite Dimensions 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2002 Abstract We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show that the Green function for the lower Hubbard band can be expressed in terms of polynomials in the bare hole-hopping operator. We check our technique against the exact solution of the Falicov–Kimball model and give explicit results up to and including second order in the inverse Hubbard interaction. Our results provide a stringent test for analytical and numerical investigations of the Mott–Hubbard insulator and the Mott–Hubbard transition within the dynamical mean-field theory. We find that the Hubbard-III approximation is not satisfactory beyond lowest order, but the local-moment approach provides a very good description of the Mott–Hubbard insulator at strong coupling. Green Function Kato Hubbard Model Stringent Test Explicit Result Gebhard, Florian aut Enthalten in Journal of low temperature physics Kluwer Academic Publishers-Plenum Publishers, 1969 126(2002), 3-4 vom: Feb., Seite 979-1007 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:126 year:2002 number:3-4 month:02 pages:979-1007 https://doi.org/10.1023/A:1013802910383 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4323 GBV_ILN_4700 AR 126 2002 3-4 02 979-1007 |
allfieldsSound |
10.1023/A:1013802910383 doi (DE-627)OLC2036793169 (DE-He213)A:1013802910383-p DE-627 ger DE-627 rakwb eng 530 VZ Kalinowski, Eva verfasserin aut Mott–Hubbard Insulator in Infinite Dimensions 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2002 Abstract We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show that the Green function for the lower Hubbard band can be expressed in terms of polynomials in the bare hole-hopping operator. We check our technique against the exact solution of the Falicov–Kimball model and give explicit results up to and including second order in the inverse Hubbard interaction. Our results provide a stringent test for analytical and numerical investigations of the Mott–Hubbard insulator and the Mott–Hubbard transition within the dynamical mean-field theory. We find that the Hubbard-III approximation is not satisfactory beyond lowest order, but the local-moment approach provides a very good description of the Mott–Hubbard insulator at strong coupling. Green Function Kato Hubbard Model Stringent Test Explicit Result Gebhard, Florian aut Enthalten in Journal of low temperature physics Kluwer Academic Publishers-Plenum Publishers, 1969 126(2002), 3-4 vom: Feb., Seite 979-1007 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:126 year:2002 number:3-4 month:02 pages:979-1007 https://doi.org/10.1023/A:1013802910383 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4323 GBV_ILN_4700 AR 126 2002 3-4 02 979-1007 |
language |
English |
source |
Enthalten in Journal of low temperature physics 126(2002), 3-4 vom: Feb., Seite 979-1007 volume:126 year:2002 number:3-4 month:02 pages:979-1007 |
sourceStr |
Enthalten in Journal of low temperature physics 126(2002), 3-4 vom: Feb., Seite 979-1007 volume:126 year:2002 number:3-4 month:02 pages:979-1007 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Green Function Kato Hubbard Model Stringent Test Explicit Result |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of low temperature physics |
authorswithroles_txt_mv |
Kalinowski, Eva @@aut@@ Gebhard, Florian @@aut@@ |
publishDateDaySort_date |
2002-02-01T00:00:00Z |
hierarchy_top_id |
129546267 |
dewey-sort |
3530 |
id |
OLC2036793169 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036793169</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143326.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1013802910383</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036793169</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1013802910383-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kalinowski, Eva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mott–Hubbard Insulator in Infinite Dimensions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show that the Green function for the lower Hubbard band can be expressed in terms of polynomials in the bare hole-hopping operator. We check our technique against the exact solution of the Falicov–Kimball model and give explicit results up to and including second order in the inverse Hubbard interaction. Our results provide a stringent test for analytical and numerical investigations of the Mott–Hubbard insulator and the Mott–Hubbard transition within the dynamical mean-field theory. We find that the Hubbard-III approximation is not satisfactory beyond lowest order, but the local-moment approach provides a very good description of the Mott–Hubbard insulator at strong coupling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kato</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hubbard Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stringent Test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Explicit Result</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gebhard, Florian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1969</subfield><subfield code="g">126(2002), 3-4 vom: Feb., Seite 979-1007</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:979-1007</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1013802910383</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield><subfield code="j">2002</subfield><subfield code="e">3-4</subfield><subfield code="c">02</subfield><subfield code="h">979-1007</subfield></datafield></record></collection>
|
author |
Kalinowski, Eva |
spellingShingle |
Kalinowski, Eva ddc 530 misc Green Function misc Kato misc Hubbard Model misc Stringent Test misc Explicit Result Mott–Hubbard Insulator in Infinite Dimensions |
authorStr |
Kalinowski, Eva |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546267 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2291 |
topic_title |
530 VZ Mott–Hubbard Insulator in Infinite Dimensions Green Function Kato Hubbard Model Stringent Test Explicit Result |
topic |
ddc 530 misc Green Function misc Kato misc Hubbard Model misc Stringent Test misc Explicit Result |
topic_unstemmed |
ddc 530 misc Green Function misc Kato misc Hubbard Model misc Stringent Test misc Explicit Result |
topic_browse |
ddc 530 misc Green Function misc Kato misc Hubbard Model misc Stringent Test misc Explicit Result |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of low temperature physics |
hierarchy_parent_id |
129546267 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of low temperature physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 |
title |
Mott–Hubbard Insulator in Infinite Dimensions |
ctrlnum |
(DE-627)OLC2036793169 (DE-He213)A:1013802910383-p |
title_full |
Mott–Hubbard Insulator in Infinite Dimensions |
author_sort |
Kalinowski, Eva |
journal |
Journal of low temperature physics |
journalStr |
Journal of low temperature physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2002 |
contenttype_str_mv |
txt |
container_start_page |
979 |
author_browse |
Kalinowski, Eva Gebhard, Florian |
container_volume |
126 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Kalinowski, Eva |
doi_str_mv |
10.1023/A:1013802910383 |
dewey-full |
530 |
title_sort |
mott–hubbard insulator in infinite dimensions |
title_auth |
Mott–Hubbard Insulator in Infinite Dimensions |
abstract |
Abstract We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show that the Green function for the lower Hubbard band can be expressed in terms of polynomials in the bare hole-hopping operator. We check our technique against the exact solution of the Falicov–Kimball model and give explicit results up to and including second order in the inverse Hubbard interaction. Our results provide a stringent test for analytical and numerical investigations of the Mott–Hubbard insulator and the Mott–Hubbard transition within the dynamical mean-field theory. We find that the Hubbard-III approximation is not satisfactory beyond lowest order, but the local-moment approach provides a very good description of the Mott–Hubbard insulator at strong coupling. © Plenum Publishing Corporation 2002 |
abstractGer |
Abstract We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show that the Green function for the lower Hubbard band can be expressed in terms of polynomials in the bare hole-hopping operator. We check our technique against the exact solution of the Falicov–Kimball model and give explicit results up to and including second order in the inverse Hubbard interaction. Our results provide a stringent test for analytical and numerical investigations of the Mott–Hubbard insulator and the Mott–Hubbard transition within the dynamical mean-field theory. We find that the Hubbard-III approximation is not satisfactory beyond lowest order, but the local-moment approach provides a very good description of the Mott–Hubbard insulator at strong coupling. © Plenum Publishing Corporation 2002 |
abstract_unstemmed |
Abstract We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show that the Green function for the lower Hubbard band can be expressed in terms of polynomials in the bare hole-hopping operator. We check our technique against the exact solution of the Falicov–Kimball model and give explicit results up to and including second order in the inverse Hubbard interaction. Our results provide a stringent test for analytical and numerical investigations of the Mott–Hubbard insulator and the Mott–Hubbard transition within the dynamical mean-field theory. We find that the Hubbard-III approximation is not satisfactory beyond lowest order, but the local-moment approach provides a very good description of the Mott–Hubbard insulator at strong coupling. © Plenum Publishing Corporation 2002 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_20 GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4082 GBV_ILN_4126 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4323 GBV_ILN_4700 |
container_issue |
3-4 |
title_short |
Mott–Hubbard Insulator in Infinite Dimensions |
url |
https://doi.org/10.1023/A:1013802910383 |
remote_bool |
false |
author2 |
Gebhard, Florian |
author2Str |
Gebhard, Florian |
ppnlink |
129546267 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1013802910383 |
up_date |
2024-07-04T04:12:04.141Z |
_version_ |
1803620265904570368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036793169</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143326.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1013802910383</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036793169</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1013802910383-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kalinowski, Eva</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mott–Hubbard Insulator in Infinite Dimensions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We calculate the one-particle density of states for the Mott–Hubbard insulating phase of the Hubbard model on a Bethe lattice in the limit of infinite coordination number. We employ the Kato–Takahashi perturbation theory around the strong-coupling limit to derive the Green function. We show that the Green function for the lower Hubbard band can be expressed in terms of polynomials in the bare hole-hopping operator. We check our technique against the exact solution of the Falicov–Kimball model and give explicit results up to and including second order in the inverse Hubbard interaction. Our results provide a stringent test for analytical and numerical investigations of the Mott–Hubbard insulator and the Mott–Hubbard transition within the dynamical mean-field theory. We find that the Hubbard-III approximation is not satisfactory beyond lowest order, but the local-moment approach provides a very good description of the Mott–Hubbard insulator at strong coupling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kato</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hubbard Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stringent Test</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Explicit Result</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gebhard, Florian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1969</subfield><subfield code="g">126(2002), 3-4 vom: Feb., Seite 979-1007</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:126</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:3-4</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:979-1007</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1013802910383</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4082</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">126</subfield><subfield code="j">2002</subfield><subfield code="e">3-4</subfield><subfield code="c">02</subfield><subfield code="h">979-1007</subfield></datafield></record></collection>
|
score |
7.401602 |