A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom
Abstract We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a varie...
Ausführliche Beschreibung
Autor*in: |
Abolins, B. P. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of low temperature physics - Springer US, 1969, 165(2011), 5-6 vom: 28. Sept., Seite 249-260 |
---|---|
Übergeordnetes Werk: |
volume:165 ; year:2011 ; number:5-6 ; day:28 ; month:09 ; pages:249-260 |
Links: |
---|
DOI / URN: |
10.1007/s10909-011-0398-1 |
---|
Katalog-ID: |
OLC203681574X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC203681574X | ||
003 | DE-627 | ||
005 | 20230503143525.0 | ||
007 | tu | ||
008 | 200819s2011 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10909-011-0398-1 |2 doi | |
035 | |a (DE-627)OLC203681574X | ||
035 | |a (DE-He213)s10909-011-0398-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Abolins, B. P. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2011 | ||
520 | |a Abstract We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a variety of geometries, with or without an external electric field. To demonstrate the capability of the approach, we calculate the orientational phase diagram of a one dimensional lattice system of rotating point dipoles in the absence of any external electric fields. We find that for finite lattice size, this system exhibits an order–disorder transition at finite dipolar interaction strength in contrast to the well-known orientational disorder of the corresponding one dimensional O(3) quantum rotor models. Comparison of the quantum Monte Carlo results with a self-consistent field estimate of the phase transition shows the emergence of an ordered phase at non-zero dipolar strength, confirming the symmetry breaking role of the anisotropic dipole–dipole interaction. | ||
650 | 4 | |a Dipolar molecules | |
650 | 4 | |a Monte Carlo | |
700 | 1 | |a Zillich, R. E. |4 aut | |
700 | 1 | |a Whaley, K. B. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of low temperature physics |d Springer US, 1969 |g 165(2011), 5-6 vom: 28. Sept., Seite 249-260 |w (DE-627)129546267 |w (DE-600)218311-0 |w (DE-576)014996642 |x 0022-2291 |7 nnns |
773 | 1 | 8 | |g volume:165 |g year:2011 |g number:5-6 |g day:28 |g month:09 |g pages:249-260 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10909-011-0398-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2185 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 165 |j 2011 |e 5-6 |b 28 |c 09 |h 249-260 |
author_variant |
b p a bp bpa r e z re rez k b w kb kbw |
---|---|
matchkey_str |
article:00222291:2011----::gonsaeotcroprahosuisfioassesiho |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s10909-011-0398-1 doi (DE-627)OLC203681574X (DE-He213)s10909-011-0398-1-p DE-627 ger DE-627 rakwb eng 530 VZ Abolins, B. P. verfasserin aut A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a variety of geometries, with or without an external electric field. To demonstrate the capability of the approach, we calculate the orientational phase diagram of a one dimensional lattice system of rotating point dipoles in the absence of any external electric fields. We find that for finite lattice size, this system exhibits an order–disorder transition at finite dipolar interaction strength in contrast to the well-known orientational disorder of the corresponding one dimensional O(3) quantum rotor models. Comparison of the quantum Monte Carlo results with a self-consistent field estimate of the phase transition shows the emergence of an ordered phase at non-zero dipolar strength, confirming the symmetry breaking role of the anisotropic dipole–dipole interaction. Dipolar molecules Monte Carlo Zillich, R. E. aut Whaley, K. B. aut Enthalten in Journal of low temperature physics Springer US, 1969 165(2011), 5-6 vom: 28. Sept., Seite 249-260 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:165 year:2011 number:5-6 day:28 month:09 pages:249-260 https://doi.org/10.1007/s10909-011-0398-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4323 AR 165 2011 5-6 28 09 249-260 |
spelling |
10.1007/s10909-011-0398-1 doi (DE-627)OLC203681574X (DE-He213)s10909-011-0398-1-p DE-627 ger DE-627 rakwb eng 530 VZ Abolins, B. P. verfasserin aut A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a variety of geometries, with or without an external electric field. To demonstrate the capability of the approach, we calculate the orientational phase diagram of a one dimensional lattice system of rotating point dipoles in the absence of any external electric fields. We find that for finite lattice size, this system exhibits an order–disorder transition at finite dipolar interaction strength in contrast to the well-known orientational disorder of the corresponding one dimensional O(3) quantum rotor models. Comparison of the quantum Monte Carlo results with a self-consistent field estimate of the phase transition shows the emergence of an ordered phase at non-zero dipolar strength, confirming the symmetry breaking role of the anisotropic dipole–dipole interaction. Dipolar molecules Monte Carlo Zillich, R. E. aut Whaley, K. B. aut Enthalten in Journal of low temperature physics Springer US, 1969 165(2011), 5-6 vom: 28. Sept., Seite 249-260 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:165 year:2011 number:5-6 day:28 month:09 pages:249-260 https://doi.org/10.1007/s10909-011-0398-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4323 AR 165 2011 5-6 28 09 249-260 |
allfields_unstemmed |
10.1007/s10909-011-0398-1 doi (DE-627)OLC203681574X (DE-He213)s10909-011-0398-1-p DE-627 ger DE-627 rakwb eng 530 VZ Abolins, B. P. verfasserin aut A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a variety of geometries, with or without an external electric field. To demonstrate the capability of the approach, we calculate the orientational phase diagram of a one dimensional lattice system of rotating point dipoles in the absence of any external electric fields. We find that for finite lattice size, this system exhibits an order–disorder transition at finite dipolar interaction strength in contrast to the well-known orientational disorder of the corresponding one dimensional O(3) quantum rotor models. Comparison of the quantum Monte Carlo results with a self-consistent field estimate of the phase transition shows the emergence of an ordered phase at non-zero dipolar strength, confirming the symmetry breaking role of the anisotropic dipole–dipole interaction. Dipolar molecules Monte Carlo Zillich, R. E. aut Whaley, K. B. aut Enthalten in Journal of low temperature physics Springer US, 1969 165(2011), 5-6 vom: 28. Sept., Seite 249-260 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:165 year:2011 number:5-6 day:28 month:09 pages:249-260 https://doi.org/10.1007/s10909-011-0398-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4323 AR 165 2011 5-6 28 09 249-260 |
allfieldsGer |
10.1007/s10909-011-0398-1 doi (DE-627)OLC203681574X (DE-He213)s10909-011-0398-1-p DE-627 ger DE-627 rakwb eng 530 VZ Abolins, B. P. verfasserin aut A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a variety of geometries, with or without an external electric field. To demonstrate the capability of the approach, we calculate the orientational phase diagram of a one dimensional lattice system of rotating point dipoles in the absence of any external electric fields. We find that for finite lattice size, this system exhibits an order–disorder transition at finite dipolar interaction strength in contrast to the well-known orientational disorder of the corresponding one dimensional O(3) quantum rotor models. Comparison of the quantum Monte Carlo results with a self-consistent field estimate of the phase transition shows the emergence of an ordered phase at non-zero dipolar strength, confirming the symmetry breaking role of the anisotropic dipole–dipole interaction. Dipolar molecules Monte Carlo Zillich, R. E. aut Whaley, K. B. aut Enthalten in Journal of low temperature physics Springer US, 1969 165(2011), 5-6 vom: 28. Sept., Seite 249-260 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:165 year:2011 number:5-6 day:28 month:09 pages:249-260 https://doi.org/10.1007/s10909-011-0398-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4323 AR 165 2011 5-6 28 09 249-260 |
allfieldsSound |
10.1007/s10909-011-0398-1 doi (DE-627)OLC203681574X (DE-He213)s10909-011-0398-1-p DE-627 ger DE-627 rakwb eng 530 VZ Abolins, B. P. verfasserin aut A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom 2011 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2011 Abstract We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a variety of geometries, with or without an external electric field. To demonstrate the capability of the approach, we calculate the orientational phase diagram of a one dimensional lattice system of rotating point dipoles in the absence of any external electric fields. We find that for finite lattice size, this system exhibits an order–disorder transition at finite dipolar interaction strength in contrast to the well-known orientational disorder of the corresponding one dimensional O(3) quantum rotor models. Comparison of the quantum Monte Carlo results with a self-consistent field estimate of the phase transition shows the emergence of an ordered phase at non-zero dipolar strength, confirming the symmetry breaking role of the anisotropic dipole–dipole interaction. Dipolar molecules Monte Carlo Zillich, R. E. aut Whaley, K. B. aut Enthalten in Journal of low temperature physics Springer US, 1969 165(2011), 5-6 vom: 28. Sept., Seite 249-260 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:165 year:2011 number:5-6 day:28 month:09 pages:249-260 https://doi.org/10.1007/s10909-011-0398-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4323 AR 165 2011 5-6 28 09 249-260 |
language |
English |
source |
Enthalten in Journal of low temperature physics 165(2011), 5-6 vom: 28. Sept., Seite 249-260 volume:165 year:2011 number:5-6 day:28 month:09 pages:249-260 |
sourceStr |
Enthalten in Journal of low temperature physics 165(2011), 5-6 vom: 28. Sept., Seite 249-260 volume:165 year:2011 number:5-6 day:28 month:09 pages:249-260 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dipolar molecules Monte Carlo |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of low temperature physics |
authorswithroles_txt_mv |
Abolins, B. P. @@aut@@ Zillich, R. E. @@aut@@ Whaley, K. B. @@aut@@ |
publishDateDaySort_date |
2011-09-28T00:00:00Z |
hierarchy_top_id |
129546267 |
dewey-sort |
3530 |
id |
OLC203681574X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203681574X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143525.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-011-0398-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203681574X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-011-0398-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abolins, B. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a variety of geometries, with or without an external electric field. To demonstrate the capability of the approach, we calculate the orientational phase diagram of a one dimensional lattice system of rotating point dipoles in the absence of any external electric fields. We find that for finite lattice size, this system exhibits an order–disorder transition at finite dipolar interaction strength in contrast to the well-known orientational disorder of the corresponding one dimensional O(3) quantum rotor models. Comparison of the quantum Monte Carlo results with a self-consistent field estimate of the phase transition shows the emergence of an ordered phase at non-zero dipolar strength, confirming the symmetry breaking role of the anisotropic dipole–dipole interaction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dipolar molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zillich, R. E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Whaley, K. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">165(2011), 5-6 vom: 28. Sept., Seite 249-260</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:28</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:249-260</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-011-0398-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield><subfield code="j">2011</subfield><subfield code="e">5-6</subfield><subfield code="b">28</subfield><subfield code="c">09</subfield><subfield code="h">249-260</subfield></datafield></record></collection>
|
author |
Abolins, B. P. |
spellingShingle |
Abolins, B. P. ddc 530 misc Dipolar molecules misc Monte Carlo A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom |
authorStr |
Abolins, B. P. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546267 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2291 |
topic_title |
530 VZ A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom Dipolar molecules Monte Carlo |
topic |
ddc 530 misc Dipolar molecules misc Monte Carlo |
topic_unstemmed |
ddc 530 misc Dipolar molecules misc Monte Carlo |
topic_browse |
ddc 530 misc Dipolar molecules misc Monte Carlo |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of low temperature physics |
hierarchy_parent_id |
129546267 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of low temperature physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 |
title |
A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom |
ctrlnum |
(DE-627)OLC203681574X (DE-He213)s10909-011-0398-1-p |
title_full |
A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom |
author_sort |
Abolins, B. P. |
journal |
Journal of low temperature physics |
journalStr |
Journal of low temperature physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
249 |
author_browse |
Abolins, B. P. Zillich, R. E. Whaley, K. B. |
container_volume |
165 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Abolins, B. P. |
doi_str_mv |
10.1007/s10909-011-0398-1 |
dewey-full |
530 |
title_sort |
a ground state monte carlo approach for studies of dipolar systems with rotational degrees of freedom |
title_auth |
A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom |
abstract |
Abstract We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a variety of geometries, with or without an external electric field. To demonstrate the capability of the approach, we calculate the orientational phase diagram of a one dimensional lattice system of rotating point dipoles in the absence of any external electric fields. We find that for finite lattice size, this system exhibits an order–disorder transition at finite dipolar interaction strength in contrast to the well-known orientational disorder of the corresponding one dimensional O(3) quantum rotor models. Comparison of the quantum Monte Carlo results with a self-consistent field estimate of the phase transition shows the emergence of an ordered phase at non-zero dipolar strength, confirming the symmetry breaking role of the anisotropic dipole–dipole interaction. © Springer Science+Business Media, LLC 2011 |
abstractGer |
Abstract We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a variety of geometries, with or without an external electric field. To demonstrate the capability of the approach, we calculate the orientational phase diagram of a one dimensional lattice system of rotating point dipoles in the absence of any external electric fields. We find that for finite lattice size, this system exhibits an order–disorder transition at finite dipolar interaction strength in contrast to the well-known orientational disorder of the corresponding one dimensional O(3) quantum rotor models. Comparison of the quantum Monte Carlo results with a self-consistent field estimate of the phase transition shows the emergence of an ordered phase at non-zero dipolar strength, confirming the symmetry breaking role of the anisotropic dipole–dipole interaction. © Springer Science+Business Media, LLC 2011 |
abstract_unstemmed |
Abstract We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a variety of geometries, with or without an external electric field. To demonstrate the capability of the approach, we calculate the orientational phase diagram of a one dimensional lattice system of rotating point dipoles in the absence of any external electric fields. We find that for finite lattice size, this system exhibits an order–disorder transition at finite dipolar interaction strength in contrast to the well-known orientational disorder of the corresponding one dimensional O(3) quantum rotor models. Comparison of the quantum Monte Carlo results with a self-consistent field estimate of the phase transition shows the emergence of an ordered phase at non-zero dipolar strength, confirming the symmetry breaking role of the anisotropic dipole–dipole interaction. © Springer Science+Business Media, LLC 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_40 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4036 GBV_ILN_4126 GBV_ILN_4323 |
container_issue |
5-6 |
title_short |
A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom |
url |
https://doi.org/10.1007/s10909-011-0398-1 |
remote_bool |
false |
author2 |
Zillich, R. E. Whaley, K. B. |
author2Str |
Zillich, R. E. Whaley, K. B. |
ppnlink |
129546267 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10909-011-0398-1 |
up_date |
2024-07-04T04:15:12.625Z |
_version_ |
1803620463552757760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC203681574X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143525.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2011 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-011-0398-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC203681574X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-011-0398-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abolins, B. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Ground State Monte Carlo Approach for Studies of Dipolar Systems with Rotational Degrees of Freedom</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We have developed a path integral ground state Monte Carlo (PIGSMC) algorithm for quantum simulations of rotating dipolar molecules, using a highly accurate sixth-order algorithm. The method allows us to calculate unbiased estimates of ground state properties of dipolar molecules in a variety of geometries, with or without an external electric field. To demonstrate the capability of the approach, we calculate the orientational phase diagram of a one dimensional lattice system of rotating point dipoles in the absence of any external electric fields. We find that for finite lattice size, this system exhibits an order–disorder transition at finite dipolar interaction strength in contrast to the well-known orientational disorder of the corresponding one dimensional O(3) quantum rotor models. Comparison of the quantum Monte Carlo results with a self-consistent field estimate of the phase transition shows the emergence of an ordered phase at non-zero dipolar strength, confirming the symmetry breaking role of the anisotropic dipole–dipole interaction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dipolar molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zillich, R. E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Whaley, K. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">165(2011), 5-6 vom: 28. Sept., Seite 249-260</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:165</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:28</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:249-260</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-011-0398-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">165</subfield><subfield code="j">2011</subfield><subfield code="e">5-6</subfield><subfield code="b">28</subfield><subfield code="c">09</subfield><subfield code="h">249-260</subfield></datafield></record></collection>
|
score |
7.4022093 |