Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance
Abstract As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted sign...
Ausführliche Beschreibung
Autor*in: |
Martino, J. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of low temperature physics - Springer US, 1969, 176(2014), 3-4 vom: 14. Jan., Seite 350-355 |
---|---|
Übergeordnetes Werk: |
volume:176 ; year:2014 ; number:3-4 ; day:14 ; month:01 ; pages:350-355 |
Links: |
---|
DOI / URN: |
10.1007/s10909-013-1053-9 |
---|
Katalog-ID: |
OLC2036822444 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2036822444 | ||
003 | DE-627 | ||
005 | 20230503143609.0 | ||
007 | tu | ||
008 | 200819s2014 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10909-013-1053-9 |2 doi | |
035 | |a (DE-627)OLC2036822444 | ||
035 | |a (DE-He213)s10909-013-1053-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Martino, J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2014 | ||
520 | |a Abstract As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted signal. To achieve this goal, a good understanding of the detector’s thermal architecture is mandatory. To investigate this question, we used an $$\alpha $$ particle source in front of our niobium silicon (NbSi) alloy Transition edge sensors (TES). The number of time constants required to fit the data and the way these time constants behave as we change the bias power gave us a good insight on the TES thermal architecture. Indeed we expect a decrease of the detector time constant due to the electro-thermal feedback properties. We will first present some standard characterizations of NbSi TES using a simple thermal model and how they indicate the presence of multiple thermal decouplings. Then we will show the results of the $$\alpha $$ particles measurements and how we used them to build our thermal model for Complex Impedance fitting. All this work has been done for the QUBIC experiment, a B-modes instrument. | ||
650 | 4 | |a Transition edge sensors | |
650 | 4 | |a Cosmic microwave background | |
650 | 4 | |a Alpha particles | |
650 | 4 | |a Complex impedance | |
650 | 4 | |a Thermal architecture | |
700 | 1 | |a Miniussi, A. |4 aut | |
700 | 1 | |a Piat, M. |4 aut | |
700 | 1 | |a Prêle, D. |4 aut | |
700 | 1 | |a Pajot, F. |4 aut | |
700 | 1 | |a Decourcelle, T. |4 aut | |
700 | 1 | |a Voisin, F. |4 aut | |
700 | 1 | |a Bélier, B. |4 aut | |
700 | 1 | |a Coron, N. |4 aut | |
700 | 1 | |a Ghribi, A. |4 aut | |
700 | 1 | |a Marnieros, S. |4 aut | |
700 | 1 | |a Perbost, C. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of low temperature physics |d Springer US, 1969 |g 176(2014), 3-4 vom: 14. Jan., Seite 350-355 |w (DE-627)129546267 |w (DE-600)218311-0 |w (DE-576)014996642 |x 0022-2291 |7 nnns |
773 | 1 | 8 | |g volume:176 |g year:2014 |g number:3-4 |g day:14 |g month:01 |g pages:350-355 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10909-013-1053-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2185 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 176 |j 2014 |e 3-4 |b 14 |c 01 |h 350-355 |
author_variant |
j m jm a m am m p mp d p dp f p fp t d td f v fv b b bb n c nc a g ag s m sm c p cp |
---|---|
matchkey_str |
article:00222291:2014----::opeetrmaueetfhraacietronstsihlhpr |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1007/s10909-013-1053-9 doi (DE-627)OLC2036822444 (DE-He213)s10909-013-1053-9-p DE-627 ger DE-627 rakwb eng 530 VZ Martino, J. verfasserin aut Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted signal. To achieve this goal, a good understanding of the detector’s thermal architecture is mandatory. To investigate this question, we used an $$\alpha $$ particle source in front of our niobium silicon (NbSi) alloy Transition edge sensors (TES). The number of time constants required to fit the data and the way these time constants behave as we change the bias power gave us a good insight on the TES thermal architecture. Indeed we expect a decrease of the detector time constant due to the electro-thermal feedback properties. We will first present some standard characterizations of NbSi TES using a simple thermal model and how they indicate the presence of multiple thermal decouplings. Then we will show the results of the $$\alpha $$ particles measurements and how we used them to build our thermal model for Complex Impedance fitting. All this work has been done for the QUBIC experiment, a B-modes instrument. Transition edge sensors Cosmic microwave background Alpha particles Complex impedance Thermal architecture Miniussi, A. aut Piat, M. aut Prêle, D. aut Pajot, F. aut Decourcelle, T. aut Voisin, F. aut Bélier, B. aut Coron, N. aut Ghribi, A. aut Marnieros, S. aut Perbost, C. aut Enthalten in Journal of low temperature physics Springer US, 1969 176(2014), 3-4 vom: 14. Jan., Seite 350-355 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:176 year:2014 number:3-4 day:14 month:01 pages:350-355 https://doi.org/10.1007/s10909-013-1053-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 GBV_ILN_4126 GBV_ILN_4323 AR 176 2014 3-4 14 01 350-355 |
spelling |
10.1007/s10909-013-1053-9 doi (DE-627)OLC2036822444 (DE-He213)s10909-013-1053-9-p DE-627 ger DE-627 rakwb eng 530 VZ Martino, J. verfasserin aut Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted signal. To achieve this goal, a good understanding of the detector’s thermal architecture is mandatory. To investigate this question, we used an $$\alpha $$ particle source in front of our niobium silicon (NbSi) alloy Transition edge sensors (TES). The number of time constants required to fit the data and the way these time constants behave as we change the bias power gave us a good insight on the TES thermal architecture. Indeed we expect a decrease of the detector time constant due to the electro-thermal feedback properties. We will first present some standard characterizations of NbSi TES using a simple thermal model and how they indicate the presence of multiple thermal decouplings. Then we will show the results of the $$\alpha $$ particles measurements and how we used them to build our thermal model for Complex Impedance fitting. All this work has been done for the QUBIC experiment, a B-modes instrument. Transition edge sensors Cosmic microwave background Alpha particles Complex impedance Thermal architecture Miniussi, A. aut Piat, M. aut Prêle, D. aut Pajot, F. aut Decourcelle, T. aut Voisin, F. aut Bélier, B. aut Coron, N. aut Ghribi, A. aut Marnieros, S. aut Perbost, C. aut Enthalten in Journal of low temperature physics Springer US, 1969 176(2014), 3-4 vom: 14. Jan., Seite 350-355 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:176 year:2014 number:3-4 day:14 month:01 pages:350-355 https://doi.org/10.1007/s10909-013-1053-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 GBV_ILN_4126 GBV_ILN_4323 AR 176 2014 3-4 14 01 350-355 |
allfields_unstemmed |
10.1007/s10909-013-1053-9 doi (DE-627)OLC2036822444 (DE-He213)s10909-013-1053-9-p DE-627 ger DE-627 rakwb eng 530 VZ Martino, J. verfasserin aut Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted signal. To achieve this goal, a good understanding of the detector’s thermal architecture is mandatory. To investigate this question, we used an $$\alpha $$ particle source in front of our niobium silicon (NbSi) alloy Transition edge sensors (TES). The number of time constants required to fit the data and the way these time constants behave as we change the bias power gave us a good insight on the TES thermal architecture. Indeed we expect a decrease of the detector time constant due to the electro-thermal feedback properties. We will first present some standard characterizations of NbSi TES using a simple thermal model and how they indicate the presence of multiple thermal decouplings. Then we will show the results of the $$\alpha $$ particles measurements and how we used them to build our thermal model for Complex Impedance fitting. All this work has been done for the QUBIC experiment, a B-modes instrument. Transition edge sensors Cosmic microwave background Alpha particles Complex impedance Thermal architecture Miniussi, A. aut Piat, M. aut Prêle, D. aut Pajot, F. aut Decourcelle, T. aut Voisin, F. aut Bélier, B. aut Coron, N. aut Ghribi, A. aut Marnieros, S. aut Perbost, C. aut Enthalten in Journal of low temperature physics Springer US, 1969 176(2014), 3-4 vom: 14. Jan., Seite 350-355 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:176 year:2014 number:3-4 day:14 month:01 pages:350-355 https://doi.org/10.1007/s10909-013-1053-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 GBV_ILN_4126 GBV_ILN_4323 AR 176 2014 3-4 14 01 350-355 |
allfieldsGer |
10.1007/s10909-013-1053-9 doi (DE-627)OLC2036822444 (DE-He213)s10909-013-1053-9-p DE-627 ger DE-627 rakwb eng 530 VZ Martino, J. verfasserin aut Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted signal. To achieve this goal, a good understanding of the detector’s thermal architecture is mandatory. To investigate this question, we used an $$\alpha $$ particle source in front of our niobium silicon (NbSi) alloy Transition edge sensors (TES). The number of time constants required to fit the data and the way these time constants behave as we change the bias power gave us a good insight on the TES thermal architecture. Indeed we expect a decrease of the detector time constant due to the electro-thermal feedback properties. We will first present some standard characterizations of NbSi TES using a simple thermal model and how they indicate the presence of multiple thermal decouplings. Then we will show the results of the $$\alpha $$ particles measurements and how we used them to build our thermal model for Complex Impedance fitting. All this work has been done for the QUBIC experiment, a B-modes instrument. Transition edge sensors Cosmic microwave background Alpha particles Complex impedance Thermal architecture Miniussi, A. aut Piat, M. aut Prêle, D. aut Pajot, F. aut Decourcelle, T. aut Voisin, F. aut Bélier, B. aut Coron, N. aut Ghribi, A. aut Marnieros, S. aut Perbost, C. aut Enthalten in Journal of low temperature physics Springer US, 1969 176(2014), 3-4 vom: 14. Jan., Seite 350-355 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:176 year:2014 number:3-4 day:14 month:01 pages:350-355 https://doi.org/10.1007/s10909-013-1053-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 GBV_ILN_4126 GBV_ILN_4323 AR 176 2014 3-4 14 01 350-355 |
allfieldsSound |
10.1007/s10909-013-1053-9 doi (DE-627)OLC2036822444 (DE-He213)s10909-013-1053-9-p DE-627 ger DE-627 rakwb eng 530 VZ Martino, J. verfasserin aut Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance 2014 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2014 Abstract As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted signal. To achieve this goal, a good understanding of the detector’s thermal architecture is mandatory. To investigate this question, we used an $$\alpha $$ particle source in front of our niobium silicon (NbSi) alloy Transition edge sensors (TES). The number of time constants required to fit the data and the way these time constants behave as we change the bias power gave us a good insight on the TES thermal architecture. Indeed we expect a decrease of the detector time constant due to the electro-thermal feedback properties. We will first present some standard characterizations of NbSi TES using a simple thermal model and how they indicate the presence of multiple thermal decouplings. Then we will show the results of the $$\alpha $$ particles measurements and how we used them to build our thermal model for Complex Impedance fitting. All this work has been done for the QUBIC experiment, a B-modes instrument. Transition edge sensors Cosmic microwave background Alpha particles Complex impedance Thermal architecture Miniussi, A. aut Piat, M. aut Prêle, D. aut Pajot, F. aut Decourcelle, T. aut Voisin, F. aut Bélier, B. aut Coron, N. aut Ghribi, A. aut Marnieros, S. aut Perbost, C. aut Enthalten in Journal of low temperature physics Springer US, 1969 176(2014), 3-4 vom: 14. Jan., Seite 350-355 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:176 year:2014 number:3-4 day:14 month:01 pages:350-355 https://doi.org/10.1007/s10909-013-1053-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 GBV_ILN_4126 GBV_ILN_4323 AR 176 2014 3-4 14 01 350-355 |
language |
English |
source |
Enthalten in Journal of low temperature physics 176(2014), 3-4 vom: 14. Jan., Seite 350-355 volume:176 year:2014 number:3-4 day:14 month:01 pages:350-355 |
sourceStr |
Enthalten in Journal of low temperature physics 176(2014), 3-4 vom: 14. Jan., Seite 350-355 volume:176 year:2014 number:3-4 day:14 month:01 pages:350-355 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Transition edge sensors Cosmic microwave background Alpha particles Complex impedance Thermal architecture |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of low temperature physics |
authorswithroles_txt_mv |
Martino, J. @@aut@@ Miniussi, A. @@aut@@ Piat, M. @@aut@@ Prêle, D. @@aut@@ Pajot, F. @@aut@@ Decourcelle, T. @@aut@@ Voisin, F. @@aut@@ Bélier, B. @@aut@@ Coron, N. @@aut@@ Ghribi, A. @@aut@@ Marnieros, S. @@aut@@ Perbost, C. @@aut@@ |
publishDateDaySort_date |
2014-01-14T00:00:00Z |
hierarchy_top_id |
129546267 |
dewey-sort |
3530 |
id |
OLC2036822444 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036822444</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143609.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-013-1053-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036822444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-013-1053-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martino, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted signal. To achieve this goal, a good understanding of the detector’s thermal architecture is mandatory. To investigate this question, we used an $$\alpha $$ particle source in front of our niobium silicon (NbSi) alloy Transition edge sensors (TES). The number of time constants required to fit the data and the way these time constants behave as we change the bias power gave us a good insight on the TES thermal architecture. Indeed we expect a decrease of the detector time constant due to the electro-thermal feedback properties. We will first present some standard characterizations of NbSi TES using a simple thermal model and how they indicate the presence of multiple thermal decouplings. Then we will show the results of the $$\alpha $$ particles measurements and how we used them to build our thermal model for Complex Impedance fitting. All this work has been done for the QUBIC experiment, a B-modes instrument.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transition edge sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmic microwave background</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alpha particles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex impedance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal architecture</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miniussi, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piat, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prêle, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pajot, F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Decourcelle, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Voisin, F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bélier, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coron, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghribi, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marnieros, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perbost, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">176(2014), 3-4 vom: 14. Jan., Seite 350-355</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:176</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:14</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:350-355</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-013-1053-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">176</subfield><subfield code="j">2014</subfield><subfield code="e">3-4</subfield><subfield code="b">14</subfield><subfield code="c">01</subfield><subfield code="h">350-355</subfield></datafield></record></collection>
|
author |
Martino, J. |
spellingShingle |
Martino, J. ddc 530 misc Transition edge sensors misc Cosmic microwave background misc Alpha particles misc Complex impedance misc Thermal architecture Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance |
authorStr |
Martino, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546267 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2291 |
topic_title |
530 VZ Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance Transition edge sensors Cosmic microwave background Alpha particles Complex impedance Thermal architecture |
topic |
ddc 530 misc Transition edge sensors misc Cosmic microwave background misc Alpha particles misc Complex impedance misc Thermal architecture |
topic_unstemmed |
ddc 530 misc Transition edge sensors misc Cosmic microwave background misc Alpha particles misc Complex impedance misc Thermal architecture |
topic_browse |
ddc 530 misc Transition edge sensors misc Cosmic microwave background misc Alpha particles misc Complex impedance misc Thermal architecture |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of low temperature physics |
hierarchy_parent_id |
129546267 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of low temperature physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 |
title |
Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance |
ctrlnum |
(DE-627)OLC2036822444 (DE-He213)s10909-013-1053-9-p |
title_full |
Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance |
author_sort |
Martino, J. |
journal |
Journal of low temperature physics |
journalStr |
Journal of low temperature physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
350 |
author_browse |
Martino, J. Miniussi, A. Piat, M. Prêle, D. Pajot, F. Decourcelle, T. Voisin, F. Bélier, B. Coron, N. Ghribi, A. Marnieros, S. Perbost, C. |
container_volume |
176 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Martino, J. |
doi_str_mv |
10.1007/s10909-013-1053-9 |
dewey-full |
530 |
title_sort |
complementary measurement of thermal architecture of nbsi tes with alpha particle and complex impedance |
title_auth |
Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance |
abstract |
Abstract As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted signal. To achieve this goal, a good understanding of the detector’s thermal architecture is mandatory. To investigate this question, we used an $$\alpha $$ particle source in front of our niobium silicon (NbSi) alloy Transition edge sensors (TES). The number of time constants required to fit the data and the way these time constants behave as we change the bias power gave us a good insight on the TES thermal architecture. Indeed we expect a decrease of the detector time constant due to the electro-thermal feedback properties. We will first present some standard characterizations of NbSi TES using a simple thermal model and how they indicate the presence of multiple thermal decouplings. Then we will show the results of the $$\alpha $$ particles measurements and how we used them to build our thermal model for Complex Impedance fitting. All this work has been done for the QUBIC experiment, a B-modes instrument. © Springer Science+Business Media New York 2014 |
abstractGer |
Abstract As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted signal. To achieve this goal, a good understanding of the detector’s thermal architecture is mandatory. To investigate this question, we used an $$\alpha $$ particle source in front of our niobium silicon (NbSi) alloy Transition edge sensors (TES). The number of time constants required to fit the data and the way these time constants behave as we change the bias power gave us a good insight on the TES thermal architecture. Indeed we expect a decrease of the detector time constant due to the electro-thermal feedback properties. We will first present some standard characterizations of NbSi TES using a simple thermal model and how they indicate the presence of multiple thermal decouplings. Then we will show the results of the $$\alpha $$ particles measurements and how we used them to build our thermal model for Complex Impedance fitting. All this work has been done for the QUBIC experiment, a B-modes instrument. © Springer Science+Business Media New York 2014 |
abstract_unstemmed |
Abstract As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted signal. To achieve this goal, a good understanding of the detector’s thermal architecture is mandatory. To investigate this question, we used an $$\alpha $$ particle source in front of our niobium silicon (NbSi) alloy Transition edge sensors (TES). The number of time constants required to fit the data and the way these time constants behave as we change the bias power gave us a good insight on the TES thermal architecture. Indeed we expect a decrease of the detector time constant due to the electro-thermal feedback properties. We will first present some standard characterizations of NbSi TES using a simple thermal model and how they indicate the presence of multiple thermal decouplings. Then we will show the results of the $$\alpha $$ particles measurements and how we used them to build our thermal model for Complex Impedance fitting. All this work has been done for the QUBIC experiment, a B-modes instrument. © Springer Science+Business Media New York 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 GBV_ILN_4126 GBV_ILN_4323 |
container_issue |
3-4 |
title_short |
Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance |
url |
https://doi.org/10.1007/s10909-013-1053-9 |
remote_bool |
false |
author2 |
Miniussi, A. Piat, M. Prêle, D. Pajot, F. Decourcelle, T. Voisin, F. Bélier, B. Coron, N. Ghribi, A. Marnieros, S. Perbost, C. |
author2Str |
Miniussi, A. Piat, M. Prêle, D. Pajot, F. Decourcelle, T. Voisin, F. Bélier, B. Coron, N. Ghribi, A. Marnieros, S. Perbost, C. |
ppnlink |
129546267 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10909-013-1053-9 |
up_date |
2024-07-04T04:16:16.936Z |
_version_ |
1803620530978291712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036822444</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143609.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2014 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-013-1053-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036822444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-013-1053-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martino, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complementary Measurement of Thermal Architecture of NbSi TES with Alpha Particle and Complex Impedance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract As shown by the Planck mission (Planck Collaboration. Astronomy and astrophysics. arXiv1303.5071P, 2013), background limited bolometers in a space environment are very sensitive to high energy particles. In order to not degrade their sensitivity, it is necessary to reduce this unwanted signal. To achieve this goal, a good understanding of the detector’s thermal architecture is mandatory. To investigate this question, we used an $$\alpha $$ particle source in front of our niobium silicon (NbSi) alloy Transition edge sensors (TES). The number of time constants required to fit the data and the way these time constants behave as we change the bias power gave us a good insight on the TES thermal architecture. Indeed we expect a decrease of the detector time constant due to the electro-thermal feedback properties. We will first present some standard characterizations of NbSi TES using a simple thermal model and how they indicate the presence of multiple thermal decouplings. Then we will show the results of the $$\alpha $$ particles measurements and how we used them to build our thermal model for Complex Impedance fitting. All this work has been done for the QUBIC experiment, a B-modes instrument.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transition edge sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmic microwave background</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alpha particles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex impedance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal architecture</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miniussi, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piat, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prêle, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pajot, F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Decourcelle, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Voisin, F.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bélier, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coron, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghribi, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marnieros, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perbost, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">176(2014), 3-4 vom: 14. Jan., Seite 350-355</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:176</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:14</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:350-355</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-013-1053-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">176</subfield><subfield code="j">2014</subfield><subfield code="e">3-4</subfield><subfield code="b">14</subfield><subfield code="c">01</subfield><subfield code="h">350-355</subfield></datafield></record></collection>
|
score |
7.4021244 |