Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions
Abstract Normal-metal$$\backslash $$insulator$$\backslash $$superconductor (NIS) junctions can be used as solid-state refrigerators since the hottest electrons preferentially tunnel from the normal metal into the superconductor. In this paper, we present NIS junctions optimized to cool electrons fro...
Ausführliche Beschreibung
Autor*in: |
Lowell, Peter J. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC (outside the USA) 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of low temperature physics - Springer US, 1969, 176(2013), 5-6 vom: 15. Dez., Seite 1062-1068 |
---|---|
Übergeordnetes Werk: |
volume:176 ; year:2013 ; number:5-6 ; day:15 ; month:12 ; pages:1062-1068 |
Links: |
---|
DOI / URN: |
10.1007/s10909-013-1009-0 |
---|
Katalog-ID: |
OLC2036823408 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2036823408 | ||
003 | DE-627 | ||
005 | 20230503143613.0 | ||
007 | tu | ||
008 | 200819s2013 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10909-013-1009-0 |2 doi | |
035 | |a (DE-627)OLC2036823408 | ||
035 | |a (DE-He213)s10909-013-1009-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Lowell, Peter J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC (outside the USA) 2013 | ||
520 | |a Abstract Normal-metal$$\backslash $$insulator$$\backslash $$superconductor (NIS) junctions can be used as solid-state refrigerators since the hottest electrons preferentially tunnel from the normal metal into the superconductor. In this paper, we present NIS junctions optimized to cool electrons from a bath temperature of 100 mK. We measure a temperature reduction of the electrons in the refrigerator junctions from 100 to 26 mK which agrees with device models. Independent measurements of the electron temperature using thermometer junctions measure a temperature decrease from 100 to 48 mK. Theories explaining the difference in measured temperatures are discussed. | ||
650 | 4 | |a Microrefrigerators | |
650 | 4 | |a Electron cooling | |
650 | 4 | |a Superconducting tunnel junctions | |
700 | 1 | |a O’Neil, Galen C. |4 aut | |
700 | 1 | |a Underwood, Jason M. |4 aut | |
700 | 1 | |a Zhang, Xiaohang |4 aut | |
700 | 1 | |a Ullom, Joel N. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of low temperature physics |d Springer US, 1969 |g 176(2013), 5-6 vom: 15. Dez., Seite 1062-1068 |w (DE-627)129546267 |w (DE-600)218311-0 |w (DE-576)014996642 |x 0022-2291 |7 nnns |
773 | 1 | 8 | |g volume:176 |g year:2013 |g number:5-6 |g day:15 |g month:12 |g pages:1062-1068 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10909-013-1009-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2185 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 176 |j 2013 |e 5-6 |b 15 |c 12 |h 1062-1068 |
author_variant |
p j l pj pjl g c o gc gco j m u jm jmu x z xz j n u jn jnu |
---|---|
matchkey_str |
article:00222291:2013----::u10kolnuigomleabcsahnuaobcsahue |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s10909-013-1009-0 doi (DE-627)OLC2036823408 (DE-He213)s10909-013-1009-0-p DE-627 ger DE-627 rakwb eng 530 VZ Lowell, Peter J. verfasserin aut Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC (outside the USA) 2013 Abstract Normal-metal$$\backslash $$insulator$$\backslash $$superconductor (NIS) junctions can be used as solid-state refrigerators since the hottest electrons preferentially tunnel from the normal metal into the superconductor. In this paper, we present NIS junctions optimized to cool electrons from a bath temperature of 100 mK. We measure a temperature reduction of the electrons in the refrigerator junctions from 100 to 26 mK which agrees with device models. Independent measurements of the electron temperature using thermometer junctions measure a temperature decrease from 100 to 48 mK. Theories explaining the difference in measured temperatures are discussed. Microrefrigerators Electron cooling Superconducting tunnel junctions O’Neil, Galen C. aut Underwood, Jason M. aut Zhang, Xiaohang aut Ullom, Joel N. aut Enthalten in Journal of low temperature physics Springer US, 1969 176(2013), 5-6 vom: 15. Dez., Seite 1062-1068 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:176 year:2013 number:5-6 day:15 month:12 pages:1062-1068 https://doi.org/10.1007/s10909-013-1009-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4126 GBV_ILN_4323 AR 176 2013 5-6 15 12 1062-1068 |
spelling |
10.1007/s10909-013-1009-0 doi (DE-627)OLC2036823408 (DE-He213)s10909-013-1009-0-p DE-627 ger DE-627 rakwb eng 530 VZ Lowell, Peter J. verfasserin aut Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC (outside the USA) 2013 Abstract Normal-metal$$\backslash $$insulator$$\backslash $$superconductor (NIS) junctions can be used as solid-state refrigerators since the hottest electrons preferentially tunnel from the normal metal into the superconductor. In this paper, we present NIS junctions optimized to cool electrons from a bath temperature of 100 mK. We measure a temperature reduction of the electrons in the refrigerator junctions from 100 to 26 mK which agrees with device models. Independent measurements of the electron temperature using thermometer junctions measure a temperature decrease from 100 to 48 mK. Theories explaining the difference in measured temperatures are discussed. Microrefrigerators Electron cooling Superconducting tunnel junctions O’Neil, Galen C. aut Underwood, Jason M. aut Zhang, Xiaohang aut Ullom, Joel N. aut Enthalten in Journal of low temperature physics Springer US, 1969 176(2013), 5-6 vom: 15. Dez., Seite 1062-1068 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:176 year:2013 number:5-6 day:15 month:12 pages:1062-1068 https://doi.org/10.1007/s10909-013-1009-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4126 GBV_ILN_4323 AR 176 2013 5-6 15 12 1062-1068 |
allfields_unstemmed |
10.1007/s10909-013-1009-0 doi (DE-627)OLC2036823408 (DE-He213)s10909-013-1009-0-p DE-627 ger DE-627 rakwb eng 530 VZ Lowell, Peter J. verfasserin aut Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC (outside the USA) 2013 Abstract Normal-metal$$\backslash $$insulator$$\backslash $$superconductor (NIS) junctions can be used as solid-state refrigerators since the hottest electrons preferentially tunnel from the normal metal into the superconductor. In this paper, we present NIS junctions optimized to cool electrons from a bath temperature of 100 mK. We measure a temperature reduction of the electrons in the refrigerator junctions from 100 to 26 mK which agrees with device models. Independent measurements of the electron temperature using thermometer junctions measure a temperature decrease from 100 to 48 mK. Theories explaining the difference in measured temperatures are discussed. Microrefrigerators Electron cooling Superconducting tunnel junctions O’Neil, Galen C. aut Underwood, Jason M. aut Zhang, Xiaohang aut Ullom, Joel N. aut Enthalten in Journal of low temperature physics Springer US, 1969 176(2013), 5-6 vom: 15. Dez., Seite 1062-1068 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:176 year:2013 number:5-6 day:15 month:12 pages:1062-1068 https://doi.org/10.1007/s10909-013-1009-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4126 GBV_ILN_4323 AR 176 2013 5-6 15 12 1062-1068 |
allfieldsGer |
10.1007/s10909-013-1009-0 doi (DE-627)OLC2036823408 (DE-He213)s10909-013-1009-0-p DE-627 ger DE-627 rakwb eng 530 VZ Lowell, Peter J. verfasserin aut Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC (outside the USA) 2013 Abstract Normal-metal$$\backslash $$insulator$$\backslash $$superconductor (NIS) junctions can be used as solid-state refrigerators since the hottest electrons preferentially tunnel from the normal metal into the superconductor. In this paper, we present NIS junctions optimized to cool electrons from a bath temperature of 100 mK. We measure a temperature reduction of the electrons in the refrigerator junctions from 100 to 26 mK which agrees with device models. Independent measurements of the electron temperature using thermometer junctions measure a temperature decrease from 100 to 48 mK. Theories explaining the difference in measured temperatures are discussed. Microrefrigerators Electron cooling Superconducting tunnel junctions O’Neil, Galen C. aut Underwood, Jason M. aut Zhang, Xiaohang aut Ullom, Joel N. aut Enthalten in Journal of low temperature physics Springer US, 1969 176(2013), 5-6 vom: 15. Dez., Seite 1062-1068 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:176 year:2013 number:5-6 day:15 month:12 pages:1062-1068 https://doi.org/10.1007/s10909-013-1009-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4126 GBV_ILN_4323 AR 176 2013 5-6 15 12 1062-1068 |
allfieldsSound |
10.1007/s10909-013-1009-0 doi (DE-627)OLC2036823408 (DE-He213)s10909-013-1009-0-p DE-627 ger DE-627 rakwb eng 530 VZ Lowell, Peter J. verfasserin aut Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions 2013 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC (outside the USA) 2013 Abstract Normal-metal$$\backslash $$insulator$$\backslash $$superconductor (NIS) junctions can be used as solid-state refrigerators since the hottest electrons preferentially tunnel from the normal metal into the superconductor. In this paper, we present NIS junctions optimized to cool electrons from a bath temperature of 100 mK. We measure a temperature reduction of the electrons in the refrigerator junctions from 100 to 26 mK which agrees with device models. Independent measurements of the electron temperature using thermometer junctions measure a temperature decrease from 100 to 48 mK. Theories explaining the difference in measured temperatures are discussed. Microrefrigerators Electron cooling Superconducting tunnel junctions O’Neil, Galen C. aut Underwood, Jason M. aut Zhang, Xiaohang aut Ullom, Joel N. aut Enthalten in Journal of low temperature physics Springer US, 1969 176(2013), 5-6 vom: 15. Dez., Seite 1062-1068 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:176 year:2013 number:5-6 day:15 month:12 pages:1062-1068 https://doi.org/10.1007/s10909-013-1009-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4126 GBV_ILN_4323 AR 176 2013 5-6 15 12 1062-1068 |
language |
English |
source |
Enthalten in Journal of low temperature physics 176(2013), 5-6 vom: 15. Dez., Seite 1062-1068 volume:176 year:2013 number:5-6 day:15 month:12 pages:1062-1068 |
sourceStr |
Enthalten in Journal of low temperature physics 176(2013), 5-6 vom: 15. Dez., Seite 1062-1068 volume:176 year:2013 number:5-6 day:15 month:12 pages:1062-1068 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microrefrigerators Electron cooling Superconducting tunnel junctions |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of low temperature physics |
authorswithroles_txt_mv |
Lowell, Peter J. @@aut@@ O’Neil, Galen C. @@aut@@ Underwood, Jason M. @@aut@@ Zhang, Xiaohang @@aut@@ Ullom, Joel N. @@aut@@ |
publishDateDaySort_date |
2013-12-15T00:00:00Z |
hierarchy_top_id |
129546267 |
dewey-sort |
3530 |
id |
OLC2036823408 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036823408</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143613.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-013-1009-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036823408</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-013-1009-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lowell, Peter J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC (outside the USA) 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Normal-metal$$\backslash $$insulator$$\backslash $$superconductor (NIS) junctions can be used as solid-state refrigerators since the hottest electrons preferentially tunnel from the normal metal into the superconductor. In this paper, we present NIS junctions optimized to cool electrons from a bath temperature of 100 mK. We measure a temperature reduction of the electrons in the refrigerator junctions from 100 to 26 mK which agrees with device models. Independent measurements of the electron temperature using thermometer junctions measure a temperature decrease from 100 to 48 mK. Theories explaining the difference in measured temperatures are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microrefrigerators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting tunnel junctions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O’Neil, Galen C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Underwood, Jason M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaohang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ullom, Joel N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">176(2013), 5-6 vom: 15. Dez., Seite 1062-1068</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:176</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:15</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1062-1068</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-013-1009-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">176</subfield><subfield code="j">2013</subfield><subfield code="e">5-6</subfield><subfield code="b">15</subfield><subfield code="c">12</subfield><subfield code="h">1062-1068</subfield></datafield></record></collection>
|
author |
Lowell, Peter J. |
spellingShingle |
Lowell, Peter J. ddc 530 misc Microrefrigerators misc Electron cooling misc Superconducting tunnel junctions Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions |
authorStr |
Lowell, Peter J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546267 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2291 |
topic_title |
530 VZ Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions Microrefrigerators Electron cooling Superconducting tunnel junctions |
topic |
ddc 530 misc Microrefrigerators misc Electron cooling misc Superconducting tunnel junctions |
topic_unstemmed |
ddc 530 misc Microrefrigerators misc Electron cooling misc Superconducting tunnel junctions |
topic_browse |
ddc 530 misc Microrefrigerators misc Electron cooling misc Superconducting tunnel junctions |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of low temperature physics |
hierarchy_parent_id |
129546267 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of low temperature physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 |
title |
Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions |
ctrlnum |
(DE-627)OLC2036823408 (DE-He213)s10909-013-1009-0-p |
title_full |
Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions |
author_sort |
Lowell, Peter J. |
journal |
Journal of low temperature physics |
journalStr |
Journal of low temperature physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
1062 |
author_browse |
Lowell, Peter J. O’Neil, Galen C. Underwood, Jason M. Zhang, Xiaohang Ullom, Joel N. |
container_volume |
176 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Lowell, Peter J. |
doi_str_mv |
10.1007/s10909-013-1009-0 |
dewey-full |
530 |
title_sort |
sub-100 mk cooling using normal-metal$$\backslash $$insulator$$\backslash $$superconductor tunnel junctions |
title_auth |
Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions |
abstract |
Abstract Normal-metal$$\backslash $$insulator$$\backslash $$superconductor (NIS) junctions can be used as solid-state refrigerators since the hottest electrons preferentially tunnel from the normal metal into the superconductor. In this paper, we present NIS junctions optimized to cool electrons from a bath temperature of 100 mK. We measure a temperature reduction of the electrons in the refrigerator junctions from 100 to 26 mK which agrees with device models. Independent measurements of the electron temperature using thermometer junctions measure a temperature decrease from 100 to 48 mK. Theories explaining the difference in measured temperatures are discussed. © Springer Science+Business Media, LLC (outside the USA) 2013 |
abstractGer |
Abstract Normal-metal$$\backslash $$insulator$$\backslash $$superconductor (NIS) junctions can be used as solid-state refrigerators since the hottest electrons preferentially tunnel from the normal metal into the superconductor. In this paper, we present NIS junctions optimized to cool electrons from a bath temperature of 100 mK. We measure a temperature reduction of the electrons in the refrigerator junctions from 100 to 26 mK which agrees with device models. Independent measurements of the electron temperature using thermometer junctions measure a temperature decrease from 100 to 48 mK. Theories explaining the difference in measured temperatures are discussed. © Springer Science+Business Media, LLC (outside the USA) 2013 |
abstract_unstemmed |
Abstract Normal-metal$$\backslash $$insulator$$\backslash $$superconductor (NIS) junctions can be used as solid-state refrigerators since the hottest electrons preferentially tunnel from the normal metal into the superconductor. In this paper, we present NIS junctions optimized to cool electrons from a bath temperature of 100 mK. We measure a temperature reduction of the electrons in the refrigerator junctions from 100 to 26 mK which agrees with device models. Independent measurements of the electron temperature using thermometer junctions measure a temperature decrease from 100 to 48 mK. Theories explaining the difference in measured temperatures are discussed. © Springer Science+Business Media, LLC (outside the USA) 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2005 GBV_ILN_2185 GBV_ILN_4126 GBV_ILN_4323 |
container_issue |
5-6 |
title_short |
Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions |
url |
https://doi.org/10.1007/s10909-013-1009-0 |
remote_bool |
false |
author2 |
O’Neil, Galen C. Underwood, Jason M. Zhang, Xiaohang Ullom, Joel N. |
author2Str |
O’Neil, Galen C. Underwood, Jason M. Zhang, Xiaohang Ullom, Joel N. |
ppnlink |
129546267 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10909-013-1009-0 |
up_date |
2024-07-04T04:16:28.717Z |
_version_ |
1803620543331565568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036823408</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143613.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2013 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-013-1009-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036823408</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-013-1009-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lowell, Peter J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sub-100 mK Cooling Using Normal-Metal$$\backslash $$Insulator$$\backslash $$Superconductor Tunnel Junctions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC (outside the USA) 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Normal-metal$$\backslash $$insulator$$\backslash $$superconductor (NIS) junctions can be used as solid-state refrigerators since the hottest electrons preferentially tunnel from the normal metal into the superconductor. In this paper, we present NIS junctions optimized to cool electrons from a bath temperature of 100 mK. We measure a temperature reduction of the electrons in the refrigerator junctions from 100 to 26 mK which agrees with device models. Independent measurements of the electron temperature using thermometer junctions measure a temperature decrease from 100 to 48 mK. Theories explaining the difference in measured temperatures are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microrefrigerators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electron cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting tunnel junctions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O’Neil, Galen C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Underwood, Jason M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaohang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ullom, Joel N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">176(2013), 5-6 vom: 15. Dez., Seite 1062-1068</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:176</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:15</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:1062-1068</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-013-1009-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">176</subfield><subfield code="j">2013</subfield><subfield code="e">5-6</subfield><subfield code="b">15</subfield><subfield code="c">12</subfield><subfield code="h">1062-1068</subfield></datafield></record></collection>
|
score |
7.4009705 |