CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer
Abstract Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–...
Ausführliche Beschreibung
Autor*in: |
Tartari, A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media New York 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of low temperature physics - Springer US, 1969, 184(2016), 3-4 vom: 06. Jan., Seite 780-785 |
---|---|
Übergeordnetes Werk: |
volume:184 ; year:2016 ; number:3-4 ; day:06 ; month:01 ; pages:780-785 |
Links: |
---|
DOI / URN: |
10.1007/s10909-015-1431-6 |
---|
Katalog-ID: |
OLC2036826814 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2036826814 | ||
003 | DE-627 | ||
005 | 20230503143639.0 | ||
007 | tu | ||
008 | 200819s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10909-015-1431-6 |2 doi | |
035 | |a (DE-627)OLC2036826814 | ||
035 | |a (DE-He213)s10909-015-1431-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Tartari, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media New York 2016 | ||
520 | |a Abstract Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across $$\sim $$2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from $$\sim $$tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit. | ||
650 | 4 | |a Cosmic microwave background frequency spectrum | |
650 | 4 | |a Spectroscopy | |
650 | 4 | |a Filter-banks | |
700 | 1 | |a Battistelli, E. S. |4 aut | |
700 | 1 | |a Piat, M. |4 aut | |
700 | 1 | |a Prêle, D. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of low temperature physics |d Springer US, 1969 |g 184(2016), 3-4 vom: 06. Jan., Seite 780-785 |w (DE-627)129546267 |w (DE-600)218311-0 |w (DE-576)014996642 |x 0022-2291 |7 nnns |
773 | 1 | 8 | |g volume:184 |g year:2016 |g number:3-4 |g day:06 |g month:01 |g pages:780-785 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10909-015-1431-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 184 |j 2016 |e 3-4 |b 06 |c 01 |h 780-785 |
author_variant |
a t at e s b es esb m p mp d p dp |
---|---|
matchkey_str |
article:00222291:2016----::msinepotntefrcygncitr |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s10909-015-1431-6 doi (DE-627)OLC2036826814 (DE-He213)s10909-015-1431-6-p DE-627 ger DE-627 rakwb eng 530 VZ Tartari, A. verfasserin aut CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across $$\sim $$2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from $$\sim $$tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit. Cosmic microwave background frequency spectrum Spectroscopy Filter-banks Battistelli, E. S. aut Piat, M. aut Prêle, D. aut Enthalten in Journal of low temperature physics Springer US, 1969 184(2016), 3-4 vom: 06. Jan., Seite 780-785 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:184 year:2016 number:3-4 day:06 month:01 pages:780-785 https://doi.org/10.1007/s10909-015-1431-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 GBV_ILN_4323 AR 184 2016 3-4 06 01 780-785 |
spelling |
10.1007/s10909-015-1431-6 doi (DE-627)OLC2036826814 (DE-He213)s10909-015-1431-6-p DE-627 ger DE-627 rakwb eng 530 VZ Tartari, A. verfasserin aut CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across $$\sim $$2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from $$\sim $$tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit. Cosmic microwave background frequency spectrum Spectroscopy Filter-banks Battistelli, E. S. aut Piat, M. aut Prêle, D. aut Enthalten in Journal of low temperature physics Springer US, 1969 184(2016), 3-4 vom: 06. Jan., Seite 780-785 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:184 year:2016 number:3-4 day:06 month:01 pages:780-785 https://doi.org/10.1007/s10909-015-1431-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 GBV_ILN_4323 AR 184 2016 3-4 06 01 780-785 |
allfields_unstemmed |
10.1007/s10909-015-1431-6 doi (DE-627)OLC2036826814 (DE-He213)s10909-015-1431-6-p DE-627 ger DE-627 rakwb eng 530 VZ Tartari, A. verfasserin aut CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across $$\sim $$2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from $$\sim $$tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit. Cosmic microwave background frequency spectrum Spectroscopy Filter-banks Battistelli, E. S. aut Piat, M. aut Prêle, D. aut Enthalten in Journal of low temperature physics Springer US, 1969 184(2016), 3-4 vom: 06. Jan., Seite 780-785 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:184 year:2016 number:3-4 day:06 month:01 pages:780-785 https://doi.org/10.1007/s10909-015-1431-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 GBV_ILN_4323 AR 184 2016 3-4 06 01 780-785 |
allfieldsGer |
10.1007/s10909-015-1431-6 doi (DE-627)OLC2036826814 (DE-He213)s10909-015-1431-6-p DE-627 ger DE-627 rakwb eng 530 VZ Tartari, A. verfasserin aut CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across $$\sim $$2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from $$\sim $$tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit. Cosmic microwave background frequency spectrum Spectroscopy Filter-banks Battistelli, E. S. aut Piat, M. aut Prêle, D. aut Enthalten in Journal of low temperature physics Springer US, 1969 184(2016), 3-4 vom: 06. Jan., Seite 780-785 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:184 year:2016 number:3-4 day:06 month:01 pages:780-785 https://doi.org/10.1007/s10909-015-1431-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 GBV_ILN_4323 AR 184 2016 3-4 06 01 780-785 |
allfieldsSound |
10.1007/s10909-015-1431-6 doi (DE-627)OLC2036826814 (DE-He213)s10909-015-1431-6-p DE-627 ger DE-627 rakwb eng 530 VZ Tartari, A. verfasserin aut CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media New York 2016 Abstract Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across $$\sim $$2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from $$\sim $$tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit. Cosmic microwave background frequency spectrum Spectroscopy Filter-banks Battistelli, E. S. aut Piat, M. aut Prêle, D. aut Enthalten in Journal of low temperature physics Springer US, 1969 184(2016), 3-4 vom: 06. Jan., Seite 780-785 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:184 year:2016 number:3-4 day:06 month:01 pages:780-785 https://doi.org/10.1007/s10909-015-1431-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 GBV_ILN_4323 AR 184 2016 3-4 06 01 780-785 |
language |
English |
source |
Enthalten in Journal of low temperature physics 184(2016), 3-4 vom: 06. Jan., Seite 780-785 volume:184 year:2016 number:3-4 day:06 month:01 pages:780-785 |
sourceStr |
Enthalten in Journal of low temperature physics 184(2016), 3-4 vom: 06. Jan., Seite 780-785 volume:184 year:2016 number:3-4 day:06 month:01 pages:780-785 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cosmic microwave background frequency spectrum Spectroscopy Filter-banks |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of low temperature physics |
authorswithroles_txt_mv |
Tartari, A. @@aut@@ Battistelli, E. S. @@aut@@ Piat, M. @@aut@@ Prêle, D. @@aut@@ |
publishDateDaySort_date |
2016-01-06T00:00:00Z |
hierarchy_top_id |
129546267 |
dewey-sort |
3530 |
id |
OLC2036826814 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036826814</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143639.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-015-1431-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036826814</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-015-1431-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tartari, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across $$\sim $$2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from $$\sim $$tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmic microwave background frequency spectrum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filter-banks</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Battistelli, E. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piat, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prêle, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">184(2016), 3-4 vom: 06. Jan., Seite 780-785</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:184</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:06</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:780-785</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-015-1431-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">184</subfield><subfield code="j">2016</subfield><subfield code="e">3-4</subfield><subfield code="b">06</subfield><subfield code="c">01</subfield><subfield code="h">780-785</subfield></datafield></record></collection>
|
author |
Tartari, A. |
spellingShingle |
Tartari, A. ddc 530 misc Cosmic microwave background frequency spectrum misc Spectroscopy misc Filter-banks CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer |
authorStr |
Tartari, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546267 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2291 |
topic_title |
530 VZ CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer Cosmic microwave background frequency spectrum Spectroscopy Filter-banks |
topic |
ddc 530 misc Cosmic microwave background frequency spectrum misc Spectroscopy misc Filter-banks |
topic_unstemmed |
ddc 530 misc Cosmic microwave background frequency spectrum misc Spectroscopy misc Filter-banks |
topic_browse |
ddc 530 misc Cosmic microwave background frequency spectrum misc Spectroscopy misc Filter-banks |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of low temperature physics |
hierarchy_parent_id |
129546267 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of low temperature physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 |
title |
CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer |
ctrlnum |
(DE-627)OLC2036826814 (DE-He213)s10909-015-1431-6-p |
title_full |
CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer |
author_sort |
Tartari, A. |
journal |
Journal of low temperature physics |
journalStr |
Journal of low temperature physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
780 |
author_browse |
Tartari, A. Battistelli, E. S. Piat, M. Prêle, D. |
container_volume |
184 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Tartari, A. |
doi_str_mv |
10.1007/s10909-015-1431-6 |
dewey-full |
530 |
title_sort |
cmb science: opportunities for a cryogenic filter-bank spectrometer |
title_auth |
CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer |
abstract |
Abstract Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across $$\sim $$2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from $$\sim $$tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit. © Springer Science+Business Media New York 2016 |
abstractGer |
Abstract Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across $$\sim $$2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from $$\sim $$tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit. © Springer Science+Business Media New York 2016 |
abstract_unstemmed |
Abstract Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across $$\sim $$2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from $$\sim $$tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit. © Springer Science+Business Media New York 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 GBV_ILN_4323 |
container_issue |
3-4 |
title_short |
CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer |
url |
https://doi.org/10.1007/s10909-015-1431-6 |
remote_bool |
false |
author2 |
Battistelli, E. S. Piat, M. Prêle, D. |
author2Str |
Battistelli, E. S. Piat, M. Prêle, D. |
ppnlink |
129546267 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10909-015-1431-6 |
up_date |
2024-07-04T04:17:02.795Z |
_version_ |
1803620579073327104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036826814</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143639.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-015-1431-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036826814</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-015-1431-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tartari, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media New York 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across $$\sim $$2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from $$\sim $$tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmic microwave background frequency spectrum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filter-banks</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Battistelli, E. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piat, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prêle, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">184(2016), 3-4 vom: 06. Jan., Seite 780-785</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:184</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:06</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:780-785</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-015-1431-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">184</subfield><subfield code="j">2016</subfield><subfield code="e">3-4</subfield><subfield code="b">06</subfield><subfield code="c">01</subfield><subfield code="h">780-785</subfield></datafield></record></collection>
|
score |
7.4028025 |