Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices
Abstract In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfa...
Ausführliche Beschreibung
Autor*in: |
Huang, Beibing [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of low temperature physics - Springer US, 1969, 190(2017), 1-2 vom: 17. Okt., Seite 78-89 |
---|---|
Übergeordnetes Werk: |
volume:190 ; year:2017 ; number:1-2 ; day:17 ; month:10 ; pages:78-89 |
Links: |
---|
DOI / URN: |
10.1007/s10909-017-1822-y |
---|
Katalog-ID: |
OLC2036829732 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2036829732 | ||
003 | DE-627 | ||
005 | 20230503143701.0 | ||
007 | tu | ||
008 | 200819s2017 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10909-017-1822-y |2 doi | |
035 | |a (DE-627)OLC2036829732 | ||
035 | |a (DE-He213)s10909-017-1822-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Huang, Beibing |e verfasserin |0 (orcid)0000-0001-8202-5495 |4 aut | |
245 | 1 | 0 | |a Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2017 | ||
520 | |a Abstract In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy. | ||
650 | 4 | |a Weyl superfluid | |
650 | 4 | |a Fermi arc surface states | |
650 | 4 | |a Band inversion | |
773 | 0 | 8 | |i Enthalten in |t Journal of low temperature physics |d Springer US, 1969 |g 190(2017), 1-2 vom: 17. Okt., Seite 78-89 |w (DE-627)129546267 |w (DE-600)218311-0 |w (DE-576)014996642 |x 0022-2291 |7 nnns |
773 | 1 | 8 | |g volume:190 |g year:2017 |g number:1-2 |g day:17 |g month:10 |g pages:78-89 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10909-017-1822-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 190 |j 2017 |e 1-2 |b 17 |c 10 |h 78-89 |
author_variant |
b h bh |
---|---|
matchkey_str |
article:00222291:2017----::niernwysprliiutaodemoigssyndmni |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s10909-017-1822-y doi (DE-627)OLC2036829732 (DE-He213)s10909-017-1822-y-p DE-627 ger DE-627 rakwb eng 530 VZ Huang, Beibing verfasserin (orcid)0000-0001-8202-5495 aut Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2017 Abstract In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy. Weyl superfluid Fermi arc surface states Band inversion Enthalten in Journal of low temperature physics Springer US, 1969 190(2017), 1-2 vom: 17. Okt., Seite 78-89 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:190 year:2017 number:1-2 day:17 month:10 pages:78-89 https://doi.org/10.1007/s10909-017-1822-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 GBV_ILN_4323 AR 190 2017 1-2 17 10 78-89 |
spelling |
10.1007/s10909-017-1822-y doi (DE-627)OLC2036829732 (DE-He213)s10909-017-1822-y-p DE-627 ger DE-627 rakwb eng 530 VZ Huang, Beibing verfasserin (orcid)0000-0001-8202-5495 aut Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2017 Abstract In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy. Weyl superfluid Fermi arc surface states Band inversion Enthalten in Journal of low temperature physics Springer US, 1969 190(2017), 1-2 vom: 17. Okt., Seite 78-89 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:190 year:2017 number:1-2 day:17 month:10 pages:78-89 https://doi.org/10.1007/s10909-017-1822-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 GBV_ILN_4323 AR 190 2017 1-2 17 10 78-89 |
allfields_unstemmed |
10.1007/s10909-017-1822-y doi (DE-627)OLC2036829732 (DE-He213)s10909-017-1822-y-p DE-627 ger DE-627 rakwb eng 530 VZ Huang, Beibing verfasserin (orcid)0000-0001-8202-5495 aut Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2017 Abstract In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy. Weyl superfluid Fermi arc surface states Band inversion Enthalten in Journal of low temperature physics Springer US, 1969 190(2017), 1-2 vom: 17. Okt., Seite 78-89 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:190 year:2017 number:1-2 day:17 month:10 pages:78-89 https://doi.org/10.1007/s10909-017-1822-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 GBV_ILN_4323 AR 190 2017 1-2 17 10 78-89 |
allfieldsGer |
10.1007/s10909-017-1822-y doi (DE-627)OLC2036829732 (DE-He213)s10909-017-1822-y-p DE-627 ger DE-627 rakwb eng 530 VZ Huang, Beibing verfasserin (orcid)0000-0001-8202-5495 aut Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2017 Abstract In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy. Weyl superfluid Fermi arc surface states Band inversion Enthalten in Journal of low temperature physics Springer US, 1969 190(2017), 1-2 vom: 17. Okt., Seite 78-89 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:190 year:2017 number:1-2 day:17 month:10 pages:78-89 https://doi.org/10.1007/s10909-017-1822-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 GBV_ILN_4323 AR 190 2017 1-2 17 10 78-89 |
allfieldsSound |
10.1007/s10909-017-1822-y doi (DE-627)OLC2036829732 (DE-He213)s10909-017-1822-y-p DE-627 ger DE-627 rakwb eng 530 VZ Huang, Beibing verfasserin (orcid)0000-0001-8202-5495 aut Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices 2017 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2017 Abstract In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy. Weyl superfluid Fermi arc surface states Band inversion Enthalten in Journal of low temperature physics Springer US, 1969 190(2017), 1-2 vom: 17. Okt., Seite 78-89 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:190 year:2017 number:1-2 day:17 month:10 pages:78-89 https://doi.org/10.1007/s10909-017-1822-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 GBV_ILN_4323 AR 190 2017 1-2 17 10 78-89 |
language |
English |
source |
Enthalten in Journal of low temperature physics 190(2017), 1-2 vom: 17. Okt., Seite 78-89 volume:190 year:2017 number:1-2 day:17 month:10 pages:78-89 |
sourceStr |
Enthalten in Journal of low temperature physics 190(2017), 1-2 vom: 17. Okt., Seite 78-89 volume:190 year:2017 number:1-2 day:17 month:10 pages:78-89 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Weyl superfluid Fermi arc surface states Band inversion |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of low temperature physics |
authorswithroles_txt_mv |
Huang, Beibing @@aut@@ |
publishDateDaySort_date |
2017-10-17T00:00:00Z |
hierarchy_top_id |
129546267 |
dewey-sort |
3530 |
id |
OLC2036829732 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036829732</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143701.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-017-1822-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036829732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-017-1822-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Beibing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8202-5495</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weyl superfluid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fermi arc surface states</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Band inversion</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">190(2017), 1-2 vom: 17. Okt., Seite 78-89</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:190</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:17</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:78-89</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-017-1822-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">190</subfield><subfield code="j">2017</subfield><subfield code="e">1-2</subfield><subfield code="b">17</subfield><subfield code="c">10</subfield><subfield code="h">78-89</subfield></datafield></record></collection>
|
author |
Huang, Beibing |
spellingShingle |
Huang, Beibing ddc 530 misc Weyl superfluid misc Fermi arc surface states misc Band inversion Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices |
authorStr |
Huang, Beibing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546267 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2291 |
topic_title |
530 VZ Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices Weyl superfluid Fermi arc surface states Band inversion |
topic |
ddc 530 misc Weyl superfluid misc Fermi arc surface states misc Band inversion |
topic_unstemmed |
ddc 530 misc Weyl superfluid misc Fermi arc surface states misc Band inversion |
topic_browse |
ddc 530 misc Weyl superfluid misc Fermi arc surface states misc Band inversion |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of low temperature physics |
hierarchy_parent_id |
129546267 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of low temperature physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 |
title |
Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices |
ctrlnum |
(DE-627)OLC2036829732 (DE-He213)s10909-017-1822-y-p |
title_full |
Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices |
author_sort |
Huang, Beibing |
journal |
Journal of low temperature physics |
journalStr |
Journal of low temperature physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
78 |
author_browse |
Huang, Beibing |
container_volume |
190 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Huang, Beibing |
doi_str_mv |
10.1007/s10909-017-1822-y |
normlink |
(ORCID)0000-0001-8202-5495 |
normlink_prefix_str_mv |
(orcid)0000-0001-8202-5495 |
dewey-full |
530 |
title_sort |
engineering weyl superfluid in ultracold fermionic gases by one-dimensional optical superlattices |
title_auth |
Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices |
abstract |
Abstract In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy. © Springer Science+Business Media, LLC 2017 |
abstractGer |
Abstract In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy. © Springer Science+Business Media, LLC 2017 |
abstract_unstemmed |
Abstract In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy. © Springer Science+Business Media, LLC 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 GBV_ILN_4323 |
container_issue |
1-2 |
title_short |
Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices |
url |
https://doi.org/10.1007/s10909-017-1822-y |
remote_bool |
false |
ppnlink |
129546267 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10909-017-1822-y |
up_date |
2024-07-04T04:17:29.338Z |
_version_ |
1803620606897291264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036829732</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143701.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2017 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-017-1822-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036829732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-017-1822-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Beibing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8202-5495</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weyl superfluid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fermi arc surface states</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Band inversion</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">190(2017), 1-2 vom: 17. Okt., Seite 78-89</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:190</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:17</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:78-89</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-017-1822-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">190</subfield><subfield code="j">2017</subfield><subfield code="e">1-2</subfield><subfield code="b">17</subfield><subfield code="c">10</subfield><subfield code="h">78-89</subfield></datafield></record></collection>
|
score |
7.4019375 |