Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat
Abstract Superconducting detectors, such as microwave kinetic inductance detectors (MKIDs), are sensitive to the effects of ambient magnetic fields. There are two effects magnetic fields have on the response of MKIDs; the trapping of magnetic fields inside the superconducting materials degrades the...
Ausführliche Beschreibung
Autor*in: |
Kutsuma, Hiroki [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of low temperature physics - Springer US, 1969, 193(2018), 3-4 vom: 31. Juli, Seite 203-208 |
---|---|
Übergeordnetes Werk: |
volume:193 ; year:2018 ; number:3-4 ; day:31 ; month:07 ; pages:203-208 |
Links: |
---|
DOI / URN: |
10.1007/s10909-018-2036-7 |
---|
Katalog-ID: |
OLC2036831192 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2036831192 | ||
003 | DE-627 | ||
005 | 20230503143715.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10909-018-2036-7 |2 doi | |
035 | |a (DE-627)OLC2036831192 | ||
035 | |a (DE-He213)s10909-018-2036-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Kutsuma, Hiroki |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Abstract Superconducting detectors, such as microwave kinetic inductance detectors (MKIDs), are sensitive to the effects of ambient magnetic fields. There are two effects magnetic fields have on the response of MKIDs; the trapping of magnetic fields inside the superconducting materials degrades the resonator quality, and the time variation of the magnetic fields results in a baseline fluctuation. In the case of radio astronomy, this means the detector must be protected from the geomagnetic field. Here, we construct a test system to evaluate the effects described. We also evaluate the impact of the magnetic shield. We find that a shielding power of 47 dB is necessary in the case of application with a noise equivalent power of $$2.4 \times 10^{-16}\,\text {W}/\sqrt{\text {Hz}}$$. We also confirm that the measured shielding power obtained using permalloy films is consistent with simulations based on the finite element method to an accuracy of 1 dB. We have designed magnetic shields for the GroundBIRD CMB telescope using these results. We achieve a sufficient shielding power of 55 dB. | ||
650 | 4 | |a Microwave kinetic inductance detector | |
650 | 4 | |a Magnetic shield | |
650 | 4 | |a Cosmic Microwave Background Radiation | |
700 | 1 | |a Hattori, Makoto |4 aut | |
700 | 1 | |a Kiuchi, Kenji |4 aut | |
700 | 1 | |a Mima, Satoru |4 aut | |
700 | 1 | |a Nagasaki, Taketo |4 aut | |
700 | 1 | |a Oguri, Shugo |4 aut | |
700 | 1 | |a Suzuki, Junya |4 aut | |
700 | 1 | |a Tajima, Osamu |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of low temperature physics |d Springer US, 1969 |g 193(2018), 3-4 vom: 31. Juli, Seite 203-208 |w (DE-627)129546267 |w (DE-600)218311-0 |w (DE-576)014996642 |x 0022-2291 |7 nnns |
773 | 1 | 8 | |g volume:193 |g year:2018 |g number:3-4 |g day:31 |g month:07 |g pages:203-208 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10909-018-2036-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 193 |j 2018 |e 3-4 |b 31 |c 07 |h 203-208 |
author_variant |
h k hk m h mh k k kk s m sm t n tn s o so j s js o t ot |
---|---|
matchkey_str |
article:00222291:2018----::piiainfemgeisiligomisoneo |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s10909-018-2036-7 doi (DE-627)OLC2036831192 (DE-He213)s10909-018-2036-7-p DE-627 ger DE-627 rakwb eng 530 VZ Kutsuma, Hiroki verfasserin aut Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Superconducting detectors, such as microwave kinetic inductance detectors (MKIDs), are sensitive to the effects of ambient magnetic fields. There are two effects magnetic fields have on the response of MKIDs; the trapping of magnetic fields inside the superconducting materials degrades the resonator quality, and the time variation of the magnetic fields results in a baseline fluctuation. In the case of radio astronomy, this means the detector must be protected from the geomagnetic field. Here, we construct a test system to evaluate the effects described. We also evaluate the impact of the magnetic shield. We find that a shielding power of 47 dB is necessary in the case of application with a noise equivalent power of $$2.4 \times 10^{-16}\,\text {W}/\sqrt{\text {Hz}}$$. We also confirm that the measured shielding power obtained using permalloy films is consistent with simulations based on the finite element method to an accuracy of 1 dB. We have designed magnetic shields for the GroundBIRD CMB telescope using these results. We achieve a sufficient shielding power of 55 dB. Microwave kinetic inductance detector Magnetic shield Cosmic Microwave Background Radiation Hattori, Makoto aut Kiuchi, Kenji aut Mima, Satoru aut Nagasaki, Taketo aut Oguri, Shugo aut Suzuki, Junya aut Tajima, Osamu aut Enthalten in Journal of low temperature physics Springer US, 1969 193(2018), 3-4 vom: 31. Juli, Seite 203-208 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:193 year:2018 number:3-4 day:31 month:07 pages:203-208 https://doi.org/10.1007/s10909-018-2036-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 AR 193 2018 3-4 31 07 203-208 |
spelling |
10.1007/s10909-018-2036-7 doi (DE-627)OLC2036831192 (DE-He213)s10909-018-2036-7-p DE-627 ger DE-627 rakwb eng 530 VZ Kutsuma, Hiroki verfasserin aut Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Superconducting detectors, such as microwave kinetic inductance detectors (MKIDs), are sensitive to the effects of ambient magnetic fields. There are two effects magnetic fields have on the response of MKIDs; the trapping of magnetic fields inside the superconducting materials degrades the resonator quality, and the time variation of the magnetic fields results in a baseline fluctuation. In the case of radio astronomy, this means the detector must be protected from the geomagnetic field. Here, we construct a test system to evaluate the effects described. We also evaluate the impact of the magnetic shield. We find that a shielding power of 47 dB is necessary in the case of application with a noise equivalent power of $$2.4 \times 10^{-16}\,\text {W}/\sqrt{\text {Hz}}$$. We also confirm that the measured shielding power obtained using permalloy films is consistent with simulations based on the finite element method to an accuracy of 1 dB. We have designed magnetic shields for the GroundBIRD CMB telescope using these results. We achieve a sufficient shielding power of 55 dB. Microwave kinetic inductance detector Magnetic shield Cosmic Microwave Background Radiation Hattori, Makoto aut Kiuchi, Kenji aut Mima, Satoru aut Nagasaki, Taketo aut Oguri, Shugo aut Suzuki, Junya aut Tajima, Osamu aut Enthalten in Journal of low temperature physics Springer US, 1969 193(2018), 3-4 vom: 31. Juli, Seite 203-208 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:193 year:2018 number:3-4 day:31 month:07 pages:203-208 https://doi.org/10.1007/s10909-018-2036-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 AR 193 2018 3-4 31 07 203-208 |
allfields_unstemmed |
10.1007/s10909-018-2036-7 doi (DE-627)OLC2036831192 (DE-He213)s10909-018-2036-7-p DE-627 ger DE-627 rakwb eng 530 VZ Kutsuma, Hiroki verfasserin aut Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Superconducting detectors, such as microwave kinetic inductance detectors (MKIDs), are sensitive to the effects of ambient magnetic fields. There are two effects magnetic fields have on the response of MKIDs; the trapping of magnetic fields inside the superconducting materials degrades the resonator quality, and the time variation of the magnetic fields results in a baseline fluctuation. In the case of radio astronomy, this means the detector must be protected from the geomagnetic field. Here, we construct a test system to evaluate the effects described. We also evaluate the impact of the magnetic shield. We find that a shielding power of 47 dB is necessary in the case of application with a noise equivalent power of $$2.4 \times 10^{-16}\,\text {W}/\sqrt{\text {Hz}}$$. We also confirm that the measured shielding power obtained using permalloy films is consistent with simulations based on the finite element method to an accuracy of 1 dB. We have designed magnetic shields for the GroundBIRD CMB telescope using these results. We achieve a sufficient shielding power of 55 dB. Microwave kinetic inductance detector Magnetic shield Cosmic Microwave Background Radiation Hattori, Makoto aut Kiuchi, Kenji aut Mima, Satoru aut Nagasaki, Taketo aut Oguri, Shugo aut Suzuki, Junya aut Tajima, Osamu aut Enthalten in Journal of low temperature physics Springer US, 1969 193(2018), 3-4 vom: 31. Juli, Seite 203-208 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:193 year:2018 number:3-4 day:31 month:07 pages:203-208 https://doi.org/10.1007/s10909-018-2036-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 AR 193 2018 3-4 31 07 203-208 |
allfieldsGer |
10.1007/s10909-018-2036-7 doi (DE-627)OLC2036831192 (DE-He213)s10909-018-2036-7-p DE-627 ger DE-627 rakwb eng 530 VZ Kutsuma, Hiroki verfasserin aut Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Superconducting detectors, such as microwave kinetic inductance detectors (MKIDs), are sensitive to the effects of ambient magnetic fields. There are two effects magnetic fields have on the response of MKIDs; the trapping of magnetic fields inside the superconducting materials degrades the resonator quality, and the time variation of the magnetic fields results in a baseline fluctuation. In the case of radio astronomy, this means the detector must be protected from the geomagnetic field. Here, we construct a test system to evaluate the effects described. We also evaluate the impact of the magnetic shield. We find that a shielding power of 47 dB is necessary in the case of application with a noise equivalent power of $$2.4 \times 10^{-16}\,\text {W}/\sqrt{\text {Hz}}$$. We also confirm that the measured shielding power obtained using permalloy films is consistent with simulations based on the finite element method to an accuracy of 1 dB. We have designed magnetic shields for the GroundBIRD CMB telescope using these results. We achieve a sufficient shielding power of 55 dB. Microwave kinetic inductance detector Magnetic shield Cosmic Microwave Background Radiation Hattori, Makoto aut Kiuchi, Kenji aut Mima, Satoru aut Nagasaki, Taketo aut Oguri, Shugo aut Suzuki, Junya aut Tajima, Osamu aut Enthalten in Journal of low temperature physics Springer US, 1969 193(2018), 3-4 vom: 31. Juli, Seite 203-208 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:193 year:2018 number:3-4 day:31 month:07 pages:203-208 https://doi.org/10.1007/s10909-018-2036-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 AR 193 2018 3-4 31 07 203-208 |
allfieldsSound |
10.1007/s10909-018-2036-7 doi (DE-627)OLC2036831192 (DE-He213)s10909-018-2036-7-p DE-627 ger DE-627 rakwb eng 530 VZ Kutsuma, Hiroki verfasserin aut Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Superconducting detectors, such as microwave kinetic inductance detectors (MKIDs), are sensitive to the effects of ambient magnetic fields. There are two effects magnetic fields have on the response of MKIDs; the trapping of magnetic fields inside the superconducting materials degrades the resonator quality, and the time variation of the magnetic fields results in a baseline fluctuation. In the case of radio astronomy, this means the detector must be protected from the geomagnetic field. Here, we construct a test system to evaluate the effects described. We also evaluate the impact of the magnetic shield. We find that a shielding power of 47 dB is necessary in the case of application with a noise equivalent power of $$2.4 \times 10^{-16}\,\text {W}/\sqrt{\text {Hz}}$$. We also confirm that the measured shielding power obtained using permalloy films is consistent with simulations based on the finite element method to an accuracy of 1 dB. We have designed magnetic shields for the GroundBIRD CMB telescope using these results. We achieve a sufficient shielding power of 55 dB. Microwave kinetic inductance detector Magnetic shield Cosmic Microwave Background Radiation Hattori, Makoto aut Kiuchi, Kenji aut Mima, Satoru aut Nagasaki, Taketo aut Oguri, Shugo aut Suzuki, Junya aut Tajima, Osamu aut Enthalten in Journal of low temperature physics Springer US, 1969 193(2018), 3-4 vom: 31. Juli, Seite 203-208 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:193 year:2018 number:3-4 day:31 month:07 pages:203-208 https://doi.org/10.1007/s10909-018-2036-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 AR 193 2018 3-4 31 07 203-208 |
language |
English |
source |
Enthalten in Journal of low temperature physics 193(2018), 3-4 vom: 31. Juli, Seite 203-208 volume:193 year:2018 number:3-4 day:31 month:07 pages:203-208 |
sourceStr |
Enthalten in Journal of low temperature physics 193(2018), 3-4 vom: 31. Juli, Seite 203-208 volume:193 year:2018 number:3-4 day:31 month:07 pages:203-208 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microwave kinetic inductance detector Magnetic shield Cosmic Microwave Background Radiation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of low temperature physics |
authorswithroles_txt_mv |
Kutsuma, Hiroki @@aut@@ Hattori, Makoto @@aut@@ Kiuchi, Kenji @@aut@@ Mima, Satoru @@aut@@ Nagasaki, Taketo @@aut@@ Oguri, Shugo @@aut@@ Suzuki, Junya @@aut@@ Tajima, Osamu @@aut@@ |
publishDateDaySort_date |
2018-07-31T00:00:00Z |
hierarchy_top_id |
129546267 |
dewey-sort |
3530 |
id |
OLC2036831192 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036831192</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143715.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-018-2036-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036831192</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-018-2036-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kutsuma, Hiroki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Superconducting detectors, such as microwave kinetic inductance detectors (MKIDs), are sensitive to the effects of ambient magnetic fields. There are two effects magnetic fields have on the response of MKIDs; the trapping of magnetic fields inside the superconducting materials degrades the resonator quality, and the time variation of the magnetic fields results in a baseline fluctuation. In the case of radio astronomy, this means the detector must be protected from the geomagnetic field. Here, we construct a test system to evaluate the effects described. We also evaluate the impact of the magnetic shield. We find that a shielding power of 47 dB is necessary in the case of application with a noise equivalent power of $$2.4 \times 10^{-16}\,\text {W}/\sqrt{\text {Hz}}$$. We also confirm that the measured shielding power obtained using permalloy films is consistent with simulations based on the finite element method to an accuracy of 1 dB. We have designed magnetic shields for the GroundBIRD CMB telescope using these results. We achieve a sufficient shielding power of 55 dB.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave kinetic inductance detector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic shield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmic Microwave Background Radiation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hattori, Makoto</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiuchi, Kenji</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mima, Satoru</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagasaki, Taketo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oguri, Shugo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suzuki, Junya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tajima, Osamu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">193(2018), 3-4 vom: 31. Juli, Seite 203-208</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:193</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:31</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:203-208</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-018-2036-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">193</subfield><subfield code="j">2018</subfield><subfield code="e">3-4</subfield><subfield code="b">31</subfield><subfield code="c">07</subfield><subfield code="h">203-208</subfield></datafield></record></collection>
|
author |
Kutsuma, Hiroki |
spellingShingle |
Kutsuma, Hiroki ddc 530 misc Microwave kinetic inductance detector misc Magnetic shield misc Cosmic Microwave Background Radiation Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat |
authorStr |
Kutsuma, Hiroki |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546267 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2291 |
topic_title |
530 VZ Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat Microwave kinetic inductance detector Magnetic shield Cosmic Microwave Background Radiation |
topic |
ddc 530 misc Microwave kinetic inductance detector misc Magnetic shield misc Cosmic Microwave Background Radiation |
topic_unstemmed |
ddc 530 misc Microwave kinetic inductance detector misc Magnetic shield misc Cosmic Microwave Background Radiation |
topic_browse |
ddc 530 misc Microwave kinetic inductance detector misc Magnetic shield misc Cosmic Microwave Background Radiation |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of low temperature physics |
hierarchy_parent_id |
129546267 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of low temperature physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 |
title |
Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat |
ctrlnum |
(DE-627)OLC2036831192 (DE-He213)s10909-018-2036-7-p |
title_full |
Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat |
author_sort |
Kutsuma, Hiroki |
journal |
Journal of low temperature physics |
journalStr |
Journal of low temperature physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
203 |
author_browse |
Kutsuma, Hiroki Hattori, Makoto Kiuchi, Kenji Mima, Satoru Nagasaki, Taketo Oguri, Shugo Suzuki, Junya Tajima, Osamu |
container_volume |
193 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Kutsuma, Hiroki |
doi_str_mv |
10.1007/s10909-018-2036-7 |
dewey-full |
530 |
title_sort |
optimization of geomagnetic shielding for mkids mounted on a rotating cryostat |
title_auth |
Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat |
abstract |
Abstract Superconducting detectors, such as microwave kinetic inductance detectors (MKIDs), are sensitive to the effects of ambient magnetic fields. There are two effects magnetic fields have on the response of MKIDs; the trapping of magnetic fields inside the superconducting materials degrades the resonator quality, and the time variation of the magnetic fields results in a baseline fluctuation. In the case of radio astronomy, this means the detector must be protected from the geomagnetic field. Here, we construct a test system to evaluate the effects described. We also evaluate the impact of the magnetic shield. We find that a shielding power of 47 dB is necessary in the case of application with a noise equivalent power of $$2.4 \times 10^{-16}\,\text {W}/\sqrt{\text {Hz}}$$. We also confirm that the measured shielding power obtained using permalloy films is consistent with simulations based on the finite element method to an accuracy of 1 dB. We have designed magnetic shields for the GroundBIRD CMB telescope using these results. We achieve a sufficient shielding power of 55 dB. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Abstract Superconducting detectors, such as microwave kinetic inductance detectors (MKIDs), are sensitive to the effects of ambient magnetic fields. There are two effects magnetic fields have on the response of MKIDs; the trapping of magnetic fields inside the superconducting materials degrades the resonator quality, and the time variation of the magnetic fields results in a baseline fluctuation. In the case of radio astronomy, this means the detector must be protected from the geomagnetic field. Here, we construct a test system to evaluate the effects described. We also evaluate the impact of the magnetic shield. We find that a shielding power of 47 dB is necessary in the case of application with a noise equivalent power of $$2.4 \times 10^{-16}\,\text {W}/\sqrt{\text {Hz}}$$. We also confirm that the measured shielding power obtained using permalloy films is consistent with simulations based on the finite element method to an accuracy of 1 dB. We have designed magnetic shields for the GroundBIRD CMB telescope using these results. We achieve a sufficient shielding power of 55 dB. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract Superconducting detectors, such as microwave kinetic inductance detectors (MKIDs), are sensitive to the effects of ambient magnetic fields. There are two effects magnetic fields have on the response of MKIDs; the trapping of magnetic fields inside the superconducting materials degrades the resonator quality, and the time variation of the magnetic fields results in a baseline fluctuation. In the case of radio astronomy, this means the detector must be protected from the geomagnetic field. Here, we construct a test system to evaluate the effects described. We also evaluate the impact of the magnetic shield. We find that a shielding power of 47 dB is necessary in the case of application with a noise equivalent power of $$2.4 \times 10^{-16}\,\text {W}/\sqrt{\text {Hz}}$$. We also confirm that the measured shielding power obtained using permalloy films is consistent with simulations based on the finite element method to an accuracy of 1 dB. We have designed magnetic shields for the GroundBIRD CMB telescope using these results. We achieve a sufficient shielding power of 55 dB. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 |
container_issue |
3-4 |
title_short |
Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat |
url |
https://doi.org/10.1007/s10909-018-2036-7 |
remote_bool |
false |
author2 |
Hattori, Makoto Kiuchi, Kenji Mima, Satoru Nagasaki, Taketo Oguri, Shugo Suzuki, Junya Tajima, Osamu |
author2Str |
Hattori, Makoto Kiuchi, Kenji Mima, Satoru Nagasaki, Taketo Oguri, Shugo Suzuki, Junya Tajima, Osamu |
ppnlink |
129546267 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10909-018-2036-7 |
up_date |
2024-07-04T04:17:45.361Z |
_version_ |
1803620623698624512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036831192</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143715.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-018-2036-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036831192</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-018-2036-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kutsuma, Hiroki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization of Geomagnetic Shielding for MKIDs Mounted on a Rotating Cryostat</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Superconducting detectors, such as microwave kinetic inductance detectors (MKIDs), are sensitive to the effects of ambient magnetic fields. There are two effects magnetic fields have on the response of MKIDs; the trapping of magnetic fields inside the superconducting materials degrades the resonator quality, and the time variation of the magnetic fields results in a baseline fluctuation. In the case of radio astronomy, this means the detector must be protected from the geomagnetic field. Here, we construct a test system to evaluate the effects described. We also evaluate the impact of the magnetic shield. We find that a shielding power of 47 dB is necessary in the case of application with a noise equivalent power of $$2.4 \times 10^{-16}\,\text {W}/\sqrt{\text {Hz}}$$. We also confirm that the measured shielding power obtained using permalloy films is consistent with simulations based on the finite element method to an accuracy of 1 dB. We have designed magnetic shields for the GroundBIRD CMB telescope using these results. We achieve a sufficient shielding power of 55 dB.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microwave kinetic inductance detector</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic shield</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmic Microwave Background Radiation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hattori, Makoto</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiuchi, Kenji</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mima, Satoru</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagasaki, Taketo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oguri, Shugo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suzuki, Junya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tajima, Osamu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">193(2018), 3-4 vom: 31. Juli, Seite 203-208</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:193</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:3-4</subfield><subfield code="g">day:31</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:203-208</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-018-2036-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">193</subfield><subfield code="j">2018</subfield><subfield code="e">3-4</subfield><subfield code="b">31</subfield><subfield code="c">07</subfield><subfield code="h">203-208</subfield></datafield></record></collection>
|
score |
7.4013834 |