Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy
Abstract Pyramid-type antireflective subwavelength structures for large-diameter ($$> 30\hbox { cm}$$) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mit...
Ausführliche Beschreibung
Autor*in: |
Nitta, T. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of low temperature physics - Springer US, 1969, 193(2018), 5-6 vom: 11. Aug., Seite 976-983 |
---|---|
Übergeordnetes Werk: |
volume:193 ; year:2018 ; number:5-6 ; day:11 ; month:08 ; pages:976-983 |
Links: |
---|
DOI / URN: |
10.1007/s10909-018-2047-4 |
---|
Katalog-ID: |
OLC2036831400 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2036831400 | ||
003 | DE-627 | ||
005 | 20230503143724.0 | ||
007 | tu | ||
008 | 200819s2018 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10909-018-2047-4 |2 doi | |
035 | |a (DE-627)OLC2036831400 | ||
035 | |a (DE-He213)s10909-018-2047-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Nitta, T. |e verfasserin |0 (orcid)0000-0002-1208-7516 |4 aut | |
245 | 1 | 0 | |a Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2018 | ||
520 | |a Abstract Pyramid-type antireflective subwavelength structures for large-diameter ($$> 30\hbox { cm}$$) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were $$\sim $$ 3.42 and 1–$$5 \times 10^{-4}$$, respectively. Three different pyramid-type structures with a period of $$265\hbox { }\mu \hbox {m}$$ and depth of $$600\hbox { }\mu \hbox {m}$$ were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than $$10\hbox { }\mu \hbox {m}$$. The reflectance of the lens flat surface was measured using a vector network analyzer to be between $$-8$$ and $$-17$$ dB in the range of 110–170 GHz, which was consistent with the result from the simulation. | ||
650 | 4 | |a Silicon lens | |
650 | 4 | |a Antireflection coating | |
650 | 4 | |a Subwavelength structure | |
700 | 1 | |a Sekimoto, Y. |4 aut | |
700 | 1 | |a Hasebe, T. |4 aut | |
700 | 1 | |a Noda, K. |4 aut | |
700 | 1 | |a Sekiguchi, S. |4 aut | |
700 | 1 | |a Nagai, M. |4 aut | |
700 | 1 | |a Hattori, S. |4 aut | |
700 | 1 | |a Murayama, Y. |4 aut | |
700 | 1 | |a Matsuo, H. |4 aut | |
700 | 1 | |a Dominjon, A. |4 aut | |
700 | 1 | |a Shan, W. |4 aut | |
700 | 1 | |a Naruse, M. |4 aut | |
700 | 1 | |a Kuno, N. |4 aut | |
700 | 1 | |a Nakai, N. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of low temperature physics |d Springer US, 1969 |g 193(2018), 5-6 vom: 11. Aug., Seite 976-983 |w (DE-627)129546267 |w (DE-600)218311-0 |w (DE-576)014996642 |x 0022-2291 |7 nnns |
773 | 1 | 8 | |g volume:193 |g year:2018 |g number:5-6 |g day:11 |g month:08 |g pages:976-983 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10909-018-2047-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_4126 | ||
951 | |a AR | ||
952 | |d 193 |j 2018 |e 5-6 |b 11 |c 08 |h 976-983 |
author_variant |
t n tn y s ys t h th k n kn s s ss m n mn s h sh y m ym h m hm a d ad w s ws m n mn n k nk n n nn |
---|---|
matchkey_str |
article:00222291:2018----::einarctoadesrmnoprmdyenielcietutrsnounrrsaslc |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s10909-018-2047-4 doi (DE-627)OLC2036831400 (DE-He213)s10909-018-2047-4-p DE-627 ger DE-627 rakwb eng 530 VZ Nitta, T. verfasserin (orcid)0000-0002-1208-7516 aut Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Pyramid-type antireflective subwavelength structures for large-diameter ($$> 30\hbox { cm}$$) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were $$\sim $$ 3.42 and 1–$$5 \times 10^{-4}$$, respectively. Three different pyramid-type structures with a period of $$265\hbox { }\mu \hbox {m}$$ and depth of $$600\hbox { }\mu \hbox {m}$$ were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than $$10\hbox { }\mu \hbox {m}$$. The reflectance of the lens flat surface was measured using a vector network analyzer to be between $$-8$$ and $$-17$$ dB in the range of 110–170 GHz, which was consistent with the result from the simulation. Silicon lens Antireflection coating Subwavelength structure Sekimoto, Y. aut Hasebe, T. aut Noda, K. aut Sekiguchi, S. aut Nagai, M. aut Hattori, S. aut Murayama, Y. aut Matsuo, H. aut Dominjon, A. aut Shan, W. aut Naruse, M. aut Kuno, N. aut Nakai, N. aut Enthalten in Journal of low temperature physics Springer US, 1969 193(2018), 5-6 vom: 11. Aug., Seite 976-983 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:193 year:2018 number:5-6 day:11 month:08 pages:976-983 https://doi.org/10.1007/s10909-018-2047-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 AR 193 2018 5-6 11 08 976-983 |
spelling |
10.1007/s10909-018-2047-4 doi (DE-627)OLC2036831400 (DE-He213)s10909-018-2047-4-p DE-627 ger DE-627 rakwb eng 530 VZ Nitta, T. verfasserin (orcid)0000-0002-1208-7516 aut Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Pyramid-type antireflective subwavelength structures for large-diameter ($$> 30\hbox { cm}$$) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were $$\sim $$ 3.42 and 1–$$5 \times 10^{-4}$$, respectively. Three different pyramid-type structures with a period of $$265\hbox { }\mu \hbox {m}$$ and depth of $$600\hbox { }\mu \hbox {m}$$ were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than $$10\hbox { }\mu \hbox {m}$$. The reflectance of the lens flat surface was measured using a vector network analyzer to be between $$-8$$ and $$-17$$ dB in the range of 110–170 GHz, which was consistent with the result from the simulation. Silicon lens Antireflection coating Subwavelength structure Sekimoto, Y. aut Hasebe, T. aut Noda, K. aut Sekiguchi, S. aut Nagai, M. aut Hattori, S. aut Murayama, Y. aut Matsuo, H. aut Dominjon, A. aut Shan, W. aut Naruse, M. aut Kuno, N. aut Nakai, N. aut Enthalten in Journal of low temperature physics Springer US, 1969 193(2018), 5-6 vom: 11. Aug., Seite 976-983 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:193 year:2018 number:5-6 day:11 month:08 pages:976-983 https://doi.org/10.1007/s10909-018-2047-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 AR 193 2018 5-6 11 08 976-983 |
allfields_unstemmed |
10.1007/s10909-018-2047-4 doi (DE-627)OLC2036831400 (DE-He213)s10909-018-2047-4-p DE-627 ger DE-627 rakwb eng 530 VZ Nitta, T. verfasserin (orcid)0000-0002-1208-7516 aut Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Pyramid-type antireflective subwavelength structures for large-diameter ($$> 30\hbox { cm}$$) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were $$\sim $$ 3.42 and 1–$$5 \times 10^{-4}$$, respectively. Three different pyramid-type structures with a period of $$265\hbox { }\mu \hbox {m}$$ and depth of $$600\hbox { }\mu \hbox {m}$$ were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than $$10\hbox { }\mu \hbox {m}$$. The reflectance of the lens flat surface was measured using a vector network analyzer to be between $$-8$$ and $$-17$$ dB in the range of 110–170 GHz, which was consistent with the result from the simulation. Silicon lens Antireflection coating Subwavelength structure Sekimoto, Y. aut Hasebe, T. aut Noda, K. aut Sekiguchi, S. aut Nagai, M. aut Hattori, S. aut Murayama, Y. aut Matsuo, H. aut Dominjon, A. aut Shan, W. aut Naruse, M. aut Kuno, N. aut Nakai, N. aut Enthalten in Journal of low temperature physics Springer US, 1969 193(2018), 5-6 vom: 11. Aug., Seite 976-983 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:193 year:2018 number:5-6 day:11 month:08 pages:976-983 https://doi.org/10.1007/s10909-018-2047-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 AR 193 2018 5-6 11 08 976-983 |
allfieldsGer |
10.1007/s10909-018-2047-4 doi (DE-627)OLC2036831400 (DE-He213)s10909-018-2047-4-p DE-627 ger DE-627 rakwb eng 530 VZ Nitta, T. verfasserin (orcid)0000-0002-1208-7516 aut Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Pyramid-type antireflective subwavelength structures for large-diameter ($$> 30\hbox { cm}$$) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were $$\sim $$ 3.42 and 1–$$5 \times 10^{-4}$$, respectively. Three different pyramid-type structures with a period of $$265\hbox { }\mu \hbox {m}$$ and depth of $$600\hbox { }\mu \hbox {m}$$ were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than $$10\hbox { }\mu \hbox {m}$$. The reflectance of the lens flat surface was measured using a vector network analyzer to be between $$-8$$ and $$-17$$ dB in the range of 110–170 GHz, which was consistent with the result from the simulation. Silicon lens Antireflection coating Subwavelength structure Sekimoto, Y. aut Hasebe, T. aut Noda, K. aut Sekiguchi, S. aut Nagai, M. aut Hattori, S. aut Murayama, Y. aut Matsuo, H. aut Dominjon, A. aut Shan, W. aut Naruse, M. aut Kuno, N. aut Nakai, N. aut Enthalten in Journal of low temperature physics Springer US, 1969 193(2018), 5-6 vom: 11. Aug., Seite 976-983 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:193 year:2018 number:5-6 day:11 month:08 pages:976-983 https://doi.org/10.1007/s10909-018-2047-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 AR 193 2018 5-6 11 08 976-983 |
allfieldsSound |
10.1007/s10909-018-2047-4 doi (DE-627)OLC2036831400 (DE-He213)s10909-018-2047-4-p DE-627 ger DE-627 rakwb eng 530 VZ Nitta, T. verfasserin (orcid)0000-0002-1208-7516 aut Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy 2018 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Pyramid-type antireflective subwavelength structures for large-diameter ($$> 30\hbox { cm}$$) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were $$\sim $$ 3.42 and 1–$$5 \times 10^{-4}$$, respectively. Three different pyramid-type structures with a period of $$265\hbox { }\mu \hbox {m}$$ and depth of $$600\hbox { }\mu \hbox {m}$$ were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than $$10\hbox { }\mu \hbox {m}$$. The reflectance of the lens flat surface was measured using a vector network analyzer to be between $$-8$$ and $$-17$$ dB in the range of 110–170 GHz, which was consistent with the result from the simulation. Silicon lens Antireflection coating Subwavelength structure Sekimoto, Y. aut Hasebe, T. aut Noda, K. aut Sekiguchi, S. aut Nagai, M. aut Hattori, S. aut Murayama, Y. aut Matsuo, H. aut Dominjon, A. aut Shan, W. aut Naruse, M. aut Kuno, N. aut Nakai, N. aut Enthalten in Journal of low temperature physics Springer US, 1969 193(2018), 5-6 vom: 11. Aug., Seite 976-983 (DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 0022-2291 nnns volume:193 year:2018 number:5-6 day:11 month:08 pages:976-983 https://doi.org/10.1007/s10909-018-2047-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 AR 193 2018 5-6 11 08 976-983 |
language |
English |
source |
Enthalten in Journal of low temperature physics 193(2018), 5-6 vom: 11. Aug., Seite 976-983 volume:193 year:2018 number:5-6 day:11 month:08 pages:976-983 |
sourceStr |
Enthalten in Journal of low temperature physics 193(2018), 5-6 vom: 11. Aug., Seite 976-983 volume:193 year:2018 number:5-6 day:11 month:08 pages:976-983 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Silicon lens Antireflection coating Subwavelength structure |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of low temperature physics |
authorswithroles_txt_mv |
Nitta, T. @@aut@@ Sekimoto, Y. @@aut@@ Hasebe, T. @@aut@@ Noda, K. @@aut@@ Sekiguchi, S. @@aut@@ Nagai, M. @@aut@@ Hattori, S. @@aut@@ Murayama, Y. @@aut@@ Matsuo, H. @@aut@@ Dominjon, A. @@aut@@ Shan, W. @@aut@@ Naruse, M. @@aut@@ Kuno, N. @@aut@@ Nakai, N. @@aut@@ |
publishDateDaySort_date |
2018-08-11T00:00:00Z |
hierarchy_top_id |
129546267 |
dewey-sort |
3530 |
id |
OLC2036831400 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036831400</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143724.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-018-2047-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036831400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-018-2047-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nitta, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1208-7516</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Pyramid-type antireflective subwavelength structures for large-diameter ($$> 30\hbox { cm}$$) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were $$\sim $$ 3.42 and 1–$$5 \times 10^{-4}$$, respectively. Three different pyramid-type structures with a period of $$265\hbox { }\mu \hbox {m}$$ and depth of $$600\hbox { }\mu \hbox {m}$$ were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than $$10\hbox { }\mu \hbox {m}$$. The reflectance of the lens flat surface was measured using a vector network analyzer to be between $$-8$$ and $$-17$$ dB in the range of 110–170 GHz, which was consistent with the result from the simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon lens</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antireflection coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subwavelength structure</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sekimoto, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hasebe, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noda, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sekiguchi, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagai, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hattori, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murayama, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matsuo, H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dominjon, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shan, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naruse, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuno, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakai, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">193(2018), 5-6 vom: 11. Aug., Seite 976-983</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:193</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:11</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:976-983</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-018-2047-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">193</subfield><subfield code="j">2018</subfield><subfield code="e">5-6</subfield><subfield code="b">11</subfield><subfield code="c">08</subfield><subfield code="h">976-983</subfield></datafield></record></collection>
|
author |
Nitta, T. |
spellingShingle |
Nitta, T. ddc 530 misc Silicon lens misc Antireflection coating misc Subwavelength structure Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy |
authorStr |
Nitta, T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546267 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2291 |
topic_title |
530 VZ Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy Silicon lens Antireflection coating Subwavelength structure |
topic |
ddc 530 misc Silicon lens misc Antireflection coating misc Subwavelength structure |
topic_unstemmed |
ddc 530 misc Silicon lens misc Antireflection coating misc Subwavelength structure |
topic_browse |
ddc 530 misc Silicon lens misc Antireflection coating misc Subwavelength structure |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of low temperature physics |
hierarchy_parent_id |
129546267 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of low temperature physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546267 (DE-600)218311-0 (DE-576)014996642 |
title |
Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy |
ctrlnum |
(DE-627)OLC2036831400 (DE-He213)s10909-018-2047-4-p |
title_full |
Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy |
author_sort |
Nitta, T. |
journal |
Journal of low temperature physics |
journalStr |
Journal of low temperature physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
976 |
author_browse |
Nitta, T. Sekimoto, Y. Hasebe, T. Noda, K. Sekiguchi, S. Nagai, M. Hattori, S. Murayama, Y. Matsuo, H. Dominjon, A. Shan, W. Naruse, M. Kuno, N. Nakai, N. |
container_volume |
193 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Nitta, T. |
doi_str_mv |
10.1007/s10909-018-2047-4 |
normlink |
(ORCID)0000-0002-1208-7516 |
normlink_prefix_str_mv |
(orcid)0000-0002-1208-7516 |
dewey-full |
530 |
title_sort |
design, fabrication and measurement of pyramid-type antireflective structures on columnar crystal silicon lens for millimeter-wave astronomy |
title_auth |
Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy |
abstract |
Abstract Pyramid-type antireflective subwavelength structures for large-diameter ($$> 30\hbox { cm}$$) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were $$\sim $$ 3.42 and 1–$$5 \times 10^{-4}$$, respectively. Three different pyramid-type structures with a period of $$265\hbox { }\mu \hbox {m}$$ and depth of $$600\hbox { }\mu \hbox {m}$$ were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than $$10\hbox { }\mu \hbox {m}$$. The reflectance of the lens flat surface was measured using a vector network analyzer to be between $$-8$$ and $$-17$$ dB in the range of 110–170 GHz, which was consistent with the result from the simulation. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstractGer |
Abstract Pyramid-type antireflective subwavelength structures for large-diameter ($$> 30\hbox { cm}$$) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were $$\sim $$ 3.42 and 1–$$5 \times 10^{-4}$$, respectively. Three different pyramid-type structures with a period of $$265\hbox { }\mu \hbox {m}$$ and depth of $$600\hbox { }\mu \hbox {m}$$ were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than $$10\hbox { }\mu \hbox {m}$$. The reflectance of the lens flat surface was measured using a vector network analyzer to be between $$-8$$ and $$-17$$ dB in the range of 110–170 GHz, which was consistent with the result from the simulation. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract Pyramid-type antireflective subwavelength structures for large-diameter ($$> 30\hbox { cm}$$) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were $$\sim $$ 3.42 and 1–$$5 \times 10^{-4}$$, respectively. Three different pyramid-type structures with a period of $$265\hbox { }\mu \hbox {m}$$ and depth of $$600\hbox { }\mu \hbox {m}$$ were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than $$10\hbox { }\mu \hbox {m}$$. The reflectance of the lens flat surface was measured using a vector network analyzer to be between $$-8$$ and $$-17$$ dB in the range of 110–170 GHz, which was consistent with the result from the simulation. © Springer Science+Business Media, LLC, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4126 |
container_issue |
5-6 |
title_short |
Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy |
url |
https://doi.org/10.1007/s10909-018-2047-4 |
remote_bool |
false |
author2 |
Sekimoto, Y. Hasebe, T. Noda, K. Sekiguchi, S. Nagai, M. Hattori, S. Murayama, Y. Matsuo, H. Dominjon, A. Shan, W. Naruse, M. Kuno, N. Nakai, N. |
author2Str |
Sekimoto, Y. Hasebe, T. Noda, K. Sekiguchi, S. Nagai, M. Hattori, S. Murayama, Y. Matsuo, H. Dominjon, A. Shan, W. Naruse, M. Kuno, N. Nakai, N. |
ppnlink |
129546267 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10909-018-2047-4 |
up_date |
2024-07-04T04:17:47.681Z |
_version_ |
1803620626131320832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036831400</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503143724.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2018 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10909-018-2047-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036831400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10909-018-2047-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nitta, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1208-7516</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Pyramid-type antireflective subwavelength structures for large-diameter ($$> 30\hbox { cm}$$) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were $$\sim $$ 3.42 and 1–$$5 \times 10^{-4}$$, respectively. Three different pyramid-type structures with a period of $$265\hbox { }\mu \hbox {m}$$ and depth of $$600\hbox { }\mu \hbox {m}$$ were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than $$10\hbox { }\mu \hbox {m}$$. The reflectance of the lens flat surface was measured using a vector network analyzer to be between $$-8$$ and $$-17$$ dB in the range of 110–170 GHz, which was consistent with the result from the simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon lens</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antireflection coating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subwavelength structure</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sekimoto, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hasebe, T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noda, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sekiguchi, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagai, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hattori, S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murayama, Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matsuo, H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dominjon, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shan, W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naruse, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuno, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakai, N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of low temperature physics</subfield><subfield code="d">Springer US, 1969</subfield><subfield code="g">193(2018), 5-6 vom: 11. Aug., Seite 976-983</subfield><subfield code="w">(DE-627)129546267</subfield><subfield code="w">(DE-600)218311-0</subfield><subfield code="w">(DE-576)014996642</subfield><subfield code="x">0022-2291</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:193</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:11</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:976-983</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10909-018-2047-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">193</subfield><subfield code="j">2018</subfield><subfield code="e">5-6</subfield><subfield code="b">11</subfield><subfield code="c">08</subfield><subfield code="h">976-983</subfield></datafield></record></collection>
|
score |
7.401412 |