Sublattices of regular elements
Abstract Let L be an r-lattice, i.e., a modular multiplicative lattice that is compactly generated, principally generated, and has greatest element 1 compact. We consider certain subsets of L consisting of “regular elements”: $$L_f = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|\lef...
Ausführliche Beschreibung
Autor*in: |
Anderson, D. D. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2002 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kluwer Academic Publishers 2002 |
---|
Übergeordnetes Werk: |
Enthalten in: Periodica mathematica Hungarica - Kluwer Academic Publishers, 1971, 44(2002), 1 vom: März, Seite 111-126 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2002 ; number:1 ; month:03 ; pages:111-126 |
Links: |
---|
DOI / URN: |
10.1023/A:1014932204184 |
---|
Katalog-ID: |
OLC2036923062 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2036923062 | ||
003 | DE-627 | ||
005 | 20230503173201.0 | ||
007 | tu | ||
008 | 200820s2002 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1014932204184 |2 doi | |
035 | |a (DE-627)OLC2036923062 | ||
035 | |a (DE-He213)A:1014932204184-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Anderson, D. D. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sublattices of regular elements |
264 | 1 | |c 2002 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Kluwer Academic Publishers 2002 | ||
520 | |a Abstract Let L be an r-lattice, i.e., a modular multiplicative lattice that is compactly generated, principally generated, and has greatest element 1 compact. We consider certain subsets of L consisting of “regular elements”: $$L_f = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|\left. {(0:A) = 0} \right\},L_{sr} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a compact element $$X \leqslant A$$ with $$\left. {(0:X) = 0} \right\},L_r = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a principal element $$X \leqslant A{\text{ with }}\left. {(0:X) = 0} \right\},{\text{ and }}L_{rg} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|A = \bigvee _\alpha X_\alpha {\text{ where each }}X_\alpha $$ is a principal element with (0:X_{\alpha })=0\} . The first three subsets L_{f}, L_{sr}, and L_{r} are augmented filters $$\mathcal{L}^0 $$ on L, i.e., $$\mathcal{L}^0 = \mathcal{L} \cup \left\{ 0 \right\}{\text{ where }}\mathcal{L}$$ is a multiplicatively closed subset of $L$ with $A\in $$\mathcal{L}$$ and $B\geq A$ with $B\in L$ implies $B\in $$\mathcal{L}$$ and hence are sublattices of $L$ closed under multiplication. We first consider the more general situation of augmented filters on $L.$ These results are then applied to study the four previously defined subsets for $L$ an $r$-lattice or Noether lattice (i.e., an $r$-lattice with ACC). Finally, we give a brief discussion of how the results for augmented lattices can be applied to subsets of $L$ which are “regular” with respect to an $L$-module. | ||
650 | 4 | |a General Situation | |
650 | 4 | |a Regular Element | |
650 | 4 | |a Great Element | |
650 | 4 | |a Principal Element | |
650 | 4 | |a Compact Element | |
700 | 1 | |a Johnson, E. W. |4 aut | |
700 | 1 | |a Spellerberg II, Richard L. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Periodica mathematica Hungarica |d Kluwer Academic Publishers, 1971 |g 44(2002), 1 vom: März, Seite 111-126 |w (DE-627)129291307 |w (DE-600)120494-4 |w (DE-576)014472597 |x 0031-5303 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2002 |g number:1 |g month:03 |g pages:111-126 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1014932204184 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4316 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 44 |j 2002 |e 1 |c 03 |h 111-126 |
author_variant |
d d a dd dda e w j ew ewj i r l s irl irls |
---|---|
matchkey_str |
article:00315303:2002----::ultieorglr |
hierarchy_sort_str |
2002 |
publishDate |
2002 |
allfields |
10.1023/A:1014932204184 doi (DE-627)OLC2036923062 (DE-He213)A:1014932204184-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Anderson, D. D. verfasserin aut Sublattices of regular elements 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2002 Abstract Let L be an r-lattice, i.e., a modular multiplicative lattice that is compactly generated, principally generated, and has greatest element 1 compact. We consider certain subsets of L consisting of “regular elements”: $$L_f = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|\left. {(0:A) = 0} \right\},L_{sr} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a compact element $$X \leqslant A$$ with $$\left. {(0:X) = 0} \right\},L_r = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a principal element $$X \leqslant A{\text{ with }}\left. {(0:X) = 0} \right\},{\text{ and }}L_{rg} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|A = \bigvee _\alpha X_\alpha {\text{ where each }}X_\alpha $$ is a principal element with (0:X_{\alpha })=0\} . The first three subsets L_{f}, L_{sr}, and L_{r} are augmented filters $$\mathcal{L}^0 $$ on L, i.e., $$\mathcal{L}^0 = \mathcal{L} \cup \left\{ 0 \right\}{\text{ where }}\mathcal{L}$$ is a multiplicatively closed subset of $L$ with $A\in $$\mathcal{L}$$ and $B\geq A$ with $B\in L$ implies $B\in $$\mathcal{L}$$ and hence are sublattices of $L$ closed under multiplication. We first consider the more general situation of augmented filters on $L.$ These results are then applied to study the four previously defined subsets for $L$ an $r$-lattice or Noether lattice (i.e., an $r$-lattice with ACC). Finally, we give a brief discussion of how the results for augmented lattices can be applied to subsets of $L$ which are “regular” with respect to an $L$-module. General Situation Regular Element Great Element Principal Element Compact Element Johnson, E. W. aut Spellerberg II, Richard L. aut Enthalten in Periodica mathematica Hungarica Kluwer Academic Publishers, 1971 44(2002), 1 vom: März, Seite 111-126 (DE-627)129291307 (DE-600)120494-4 (DE-576)014472597 0031-5303 nnns volume:44 year:2002 number:1 month:03 pages:111-126 https://doi.org/10.1023/A:1014932204184 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4316 GBV_ILN_4318 AR 44 2002 1 03 111-126 |
spelling |
10.1023/A:1014932204184 doi (DE-627)OLC2036923062 (DE-He213)A:1014932204184-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Anderson, D. D. verfasserin aut Sublattices of regular elements 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2002 Abstract Let L be an r-lattice, i.e., a modular multiplicative lattice that is compactly generated, principally generated, and has greatest element 1 compact. We consider certain subsets of L consisting of “regular elements”: $$L_f = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|\left. {(0:A) = 0} \right\},L_{sr} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a compact element $$X \leqslant A$$ with $$\left. {(0:X) = 0} \right\},L_r = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a principal element $$X \leqslant A{\text{ with }}\left. {(0:X) = 0} \right\},{\text{ and }}L_{rg} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|A = \bigvee _\alpha X_\alpha {\text{ where each }}X_\alpha $$ is a principal element with (0:X_{\alpha })=0\} . The first three subsets L_{f}, L_{sr}, and L_{r} are augmented filters $$\mathcal{L}^0 $$ on L, i.e., $$\mathcal{L}^0 = \mathcal{L} \cup \left\{ 0 \right\}{\text{ where }}\mathcal{L}$$ is a multiplicatively closed subset of $L$ with $A\in $$\mathcal{L}$$ and $B\geq A$ with $B\in L$ implies $B\in $$\mathcal{L}$$ and hence are sublattices of $L$ closed under multiplication. We first consider the more general situation of augmented filters on $L.$ These results are then applied to study the four previously defined subsets for $L$ an $r$-lattice or Noether lattice (i.e., an $r$-lattice with ACC). Finally, we give a brief discussion of how the results for augmented lattices can be applied to subsets of $L$ which are “regular” with respect to an $L$-module. General Situation Regular Element Great Element Principal Element Compact Element Johnson, E. W. aut Spellerberg II, Richard L. aut Enthalten in Periodica mathematica Hungarica Kluwer Academic Publishers, 1971 44(2002), 1 vom: März, Seite 111-126 (DE-627)129291307 (DE-600)120494-4 (DE-576)014472597 0031-5303 nnns volume:44 year:2002 number:1 month:03 pages:111-126 https://doi.org/10.1023/A:1014932204184 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4316 GBV_ILN_4318 AR 44 2002 1 03 111-126 |
allfields_unstemmed |
10.1023/A:1014932204184 doi (DE-627)OLC2036923062 (DE-He213)A:1014932204184-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Anderson, D. D. verfasserin aut Sublattices of regular elements 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2002 Abstract Let L be an r-lattice, i.e., a modular multiplicative lattice that is compactly generated, principally generated, and has greatest element 1 compact. We consider certain subsets of L consisting of “regular elements”: $$L_f = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|\left. {(0:A) = 0} \right\},L_{sr} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a compact element $$X \leqslant A$$ with $$\left. {(0:X) = 0} \right\},L_r = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a principal element $$X \leqslant A{\text{ with }}\left. {(0:X) = 0} \right\},{\text{ and }}L_{rg} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|A = \bigvee _\alpha X_\alpha {\text{ where each }}X_\alpha $$ is a principal element with (0:X_{\alpha })=0\} . The first three subsets L_{f}, L_{sr}, and L_{r} are augmented filters $$\mathcal{L}^0 $$ on L, i.e., $$\mathcal{L}^0 = \mathcal{L} \cup \left\{ 0 \right\}{\text{ where }}\mathcal{L}$$ is a multiplicatively closed subset of $L$ with $A\in $$\mathcal{L}$$ and $B\geq A$ with $B\in L$ implies $B\in $$\mathcal{L}$$ and hence are sublattices of $L$ closed under multiplication. We first consider the more general situation of augmented filters on $L.$ These results are then applied to study the four previously defined subsets for $L$ an $r$-lattice or Noether lattice (i.e., an $r$-lattice with ACC). Finally, we give a brief discussion of how the results for augmented lattices can be applied to subsets of $L$ which are “regular” with respect to an $L$-module. General Situation Regular Element Great Element Principal Element Compact Element Johnson, E. W. aut Spellerberg II, Richard L. aut Enthalten in Periodica mathematica Hungarica Kluwer Academic Publishers, 1971 44(2002), 1 vom: März, Seite 111-126 (DE-627)129291307 (DE-600)120494-4 (DE-576)014472597 0031-5303 nnns volume:44 year:2002 number:1 month:03 pages:111-126 https://doi.org/10.1023/A:1014932204184 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4316 GBV_ILN_4318 AR 44 2002 1 03 111-126 |
allfieldsGer |
10.1023/A:1014932204184 doi (DE-627)OLC2036923062 (DE-He213)A:1014932204184-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Anderson, D. D. verfasserin aut Sublattices of regular elements 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2002 Abstract Let L be an r-lattice, i.e., a modular multiplicative lattice that is compactly generated, principally generated, and has greatest element 1 compact. We consider certain subsets of L consisting of “regular elements”: $$L_f = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|\left. {(0:A) = 0} \right\},L_{sr} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a compact element $$X \leqslant A$$ with $$\left. {(0:X) = 0} \right\},L_r = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a principal element $$X \leqslant A{\text{ with }}\left. {(0:X) = 0} \right\},{\text{ and }}L_{rg} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|A = \bigvee _\alpha X_\alpha {\text{ where each }}X_\alpha $$ is a principal element with (0:X_{\alpha })=0\} . The first three subsets L_{f}, L_{sr}, and L_{r} are augmented filters $$\mathcal{L}^0 $$ on L, i.e., $$\mathcal{L}^0 = \mathcal{L} \cup \left\{ 0 \right\}{\text{ where }}\mathcal{L}$$ is a multiplicatively closed subset of $L$ with $A\in $$\mathcal{L}$$ and $B\geq A$ with $B\in L$ implies $B\in $$\mathcal{L}$$ and hence are sublattices of $L$ closed under multiplication. We first consider the more general situation of augmented filters on $L.$ These results are then applied to study the four previously defined subsets for $L$ an $r$-lattice or Noether lattice (i.e., an $r$-lattice with ACC). Finally, we give a brief discussion of how the results for augmented lattices can be applied to subsets of $L$ which are “regular” with respect to an $L$-module. General Situation Regular Element Great Element Principal Element Compact Element Johnson, E. W. aut Spellerberg II, Richard L. aut Enthalten in Periodica mathematica Hungarica Kluwer Academic Publishers, 1971 44(2002), 1 vom: März, Seite 111-126 (DE-627)129291307 (DE-600)120494-4 (DE-576)014472597 0031-5303 nnns volume:44 year:2002 number:1 month:03 pages:111-126 https://doi.org/10.1023/A:1014932204184 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4316 GBV_ILN_4318 AR 44 2002 1 03 111-126 |
allfieldsSound |
10.1023/A:1014932204184 doi (DE-627)OLC2036923062 (DE-He213)A:1014932204184-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Anderson, D. D. verfasserin aut Sublattices of regular elements 2002 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Kluwer Academic Publishers 2002 Abstract Let L be an r-lattice, i.e., a modular multiplicative lattice that is compactly generated, principally generated, and has greatest element 1 compact. We consider certain subsets of L consisting of “regular elements”: $$L_f = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|\left. {(0:A) = 0} \right\},L_{sr} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a compact element $$X \leqslant A$$ with $$\left. {(0:X) = 0} \right\},L_r = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a principal element $$X \leqslant A{\text{ with }}\left. {(0:X) = 0} \right\},{\text{ and }}L_{rg} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|A = \bigvee _\alpha X_\alpha {\text{ where each }}X_\alpha $$ is a principal element with (0:X_{\alpha })=0\} . The first three subsets L_{f}, L_{sr}, and L_{r} are augmented filters $$\mathcal{L}^0 $$ on L, i.e., $$\mathcal{L}^0 = \mathcal{L} \cup \left\{ 0 \right\}{\text{ where }}\mathcal{L}$$ is a multiplicatively closed subset of $L$ with $A\in $$\mathcal{L}$$ and $B\geq A$ with $B\in L$ implies $B\in $$\mathcal{L}$$ and hence are sublattices of $L$ closed under multiplication. We first consider the more general situation of augmented filters on $L.$ These results are then applied to study the four previously defined subsets for $L$ an $r$-lattice or Noether lattice (i.e., an $r$-lattice with ACC). Finally, we give a brief discussion of how the results for augmented lattices can be applied to subsets of $L$ which are “regular” with respect to an $L$-module. General Situation Regular Element Great Element Principal Element Compact Element Johnson, E. W. aut Spellerberg II, Richard L. aut Enthalten in Periodica mathematica Hungarica Kluwer Academic Publishers, 1971 44(2002), 1 vom: März, Seite 111-126 (DE-627)129291307 (DE-600)120494-4 (DE-576)014472597 0031-5303 nnns volume:44 year:2002 number:1 month:03 pages:111-126 https://doi.org/10.1023/A:1014932204184 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4316 GBV_ILN_4318 AR 44 2002 1 03 111-126 |
language |
English |
source |
Enthalten in Periodica mathematica Hungarica 44(2002), 1 vom: März, Seite 111-126 volume:44 year:2002 number:1 month:03 pages:111-126 |
sourceStr |
Enthalten in Periodica mathematica Hungarica 44(2002), 1 vom: März, Seite 111-126 volume:44 year:2002 number:1 month:03 pages:111-126 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
General Situation Regular Element Great Element Principal Element Compact Element |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Periodica mathematica Hungarica |
authorswithroles_txt_mv |
Anderson, D. D. @@aut@@ Johnson, E. W. @@aut@@ Spellerberg II, Richard L. @@aut@@ |
publishDateDaySort_date |
2002-03-01T00:00:00Z |
hierarchy_top_id |
129291307 |
dewey-sort |
3510 |
id |
OLC2036923062 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036923062</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503173201.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1014932204184</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036923062</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1014932204184-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anderson, D. D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sublattices of regular elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let L be an r-lattice, i.e., a modular multiplicative lattice that is compactly generated, principally generated, and has greatest element 1 compact. We consider certain subsets of L consisting of “regular elements”: $$L_f = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|\left. {(0:A) = 0} \right\},L_{sr} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a compact element $$X \leqslant A$$ with $$\left. {(0:X) = 0} \right\},L_r = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a principal element $$X \leqslant A{\text{ with }}\left. {(0:X) = 0} \right\},{\text{ and }}L_{rg} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|A = \bigvee _\alpha X_\alpha {\text{ where each }}X_\alpha $$ is a principal element with (0:X_{\alpha })=0\} . The first three subsets L_{f}, L_{sr}, and L_{r} are augmented filters $$\mathcal{L}^0 $$ on L, i.e., $$\mathcal{L}^0 = \mathcal{L} \cup \left\{ 0 \right\}{\text{ where }}\mathcal{L}$$ is a multiplicatively closed subset of $L$ with $A\in $$\mathcal{L}$$ and $B\geq A$ with $B\in L$ implies $B\in $$\mathcal{L}$$ and hence are sublattices of $L$ closed under multiplication. We first consider the more general situation of augmented filters on $L.$ These results are then applied to study the four previously defined subsets for $L$ an $r$-lattice or Noether lattice (i.e., an $r$-lattice with ACC). Finally, we give a brief discussion of how the results for augmented lattices can be applied to subsets of $L$ which are “regular” with respect to an $L$-module.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General Situation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regular Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Great Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Principal Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact Element</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johnson, E. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spellerberg II, Richard L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Periodica mathematica Hungarica</subfield><subfield code="d">Kluwer Academic Publishers, 1971</subfield><subfield code="g">44(2002), 1 vom: März, Seite 111-126</subfield><subfield code="w">(DE-627)129291307</subfield><subfield code="w">(DE-600)120494-4</subfield><subfield code="w">(DE-576)014472597</subfield><subfield code="x">0031-5303</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:111-126</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1014932204184</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2002</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">111-126</subfield></datafield></record></collection>
|
author |
Anderson, D. D. |
spellingShingle |
Anderson, D. D. ddc 510 ssgn 17,1 misc General Situation misc Regular Element misc Great Element misc Principal Element misc Compact Element Sublattices of regular elements |
authorStr |
Anderson, D. D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129291307 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0031-5303 |
topic_title |
510 VZ 17,1 ssgn Sublattices of regular elements General Situation Regular Element Great Element Principal Element Compact Element |
topic |
ddc 510 ssgn 17,1 misc General Situation misc Regular Element misc Great Element misc Principal Element misc Compact Element |
topic_unstemmed |
ddc 510 ssgn 17,1 misc General Situation misc Regular Element misc Great Element misc Principal Element misc Compact Element |
topic_browse |
ddc 510 ssgn 17,1 misc General Situation misc Regular Element misc Great Element misc Principal Element misc Compact Element |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Periodica mathematica Hungarica |
hierarchy_parent_id |
129291307 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Periodica mathematica Hungarica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129291307 (DE-600)120494-4 (DE-576)014472597 |
title |
Sublattices of regular elements |
ctrlnum |
(DE-627)OLC2036923062 (DE-He213)A:1014932204184-p |
title_full |
Sublattices of regular elements |
author_sort |
Anderson, D. D. |
journal |
Periodica mathematica Hungarica |
journalStr |
Periodica mathematica Hungarica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2002 |
contenttype_str_mv |
txt |
container_start_page |
111 |
author_browse |
Anderson, D. D. Johnson, E. W. Spellerberg II, Richard L. |
container_volume |
44 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Anderson, D. D. |
doi_str_mv |
10.1023/A:1014932204184 |
dewey-full |
510 |
title_sort |
sublattices of regular elements |
title_auth |
Sublattices of regular elements |
abstract |
Abstract Let L be an r-lattice, i.e., a modular multiplicative lattice that is compactly generated, principally generated, and has greatest element 1 compact. We consider certain subsets of L consisting of “regular elements”: $$L_f = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|\left. {(0:A) = 0} \right\},L_{sr} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a compact element $$X \leqslant A$$ with $$\left. {(0:X) = 0} \right\},L_r = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a principal element $$X \leqslant A{\text{ with }}\left. {(0:X) = 0} \right\},{\text{ and }}L_{rg} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|A = \bigvee _\alpha X_\alpha {\text{ where each }}X_\alpha $$ is a principal element with (0:X_{\alpha })=0\} . The first three subsets L_{f}, L_{sr}, and L_{r} are augmented filters $$\mathcal{L}^0 $$ on L, i.e., $$\mathcal{L}^0 = \mathcal{L} \cup \left\{ 0 \right\}{\text{ where }}\mathcal{L}$$ is a multiplicatively closed subset of $L$ with $A\in $$\mathcal{L}$$ and $B\geq A$ with $B\in L$ implies $B\in $$\mathcal{L}$$ and hence are sublattices of $L$ closed under multiplication. We first consider the more general situation of augmented filters on $L.$ These results are then applied to study the four previously defined subsets for $L$ an $r$-lattice or Noether lattice (i.e., an $r$-lattice with ACC). Finally, we give a brief discussion of how the results for augmented lattices can be applied to subsets of $L$ which are “regular” with respect to an $L$-module. © Kluwer Academic Publishers 2002 |
abstractGer |
Abstract Let L be an r-lattice, i.e., a modular multiplicative lattice that is compactly generated, principally generated, and has greatest element 1 compact. We consider certain subsets of L consisting of “regular elements”: $$L_f = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|\left. {(0:A) = 0} \right\},L_{sr} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a compact element $$X \leqslant A$$ with $$\left. {(0:X) = 0} \right\},L_r = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a principal element $$X \leqslant A{\text{ with }}\left. {(0:X) = 0} \right\},{\text{ and }}L_{rg} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|A = \bigvee _\alpha X_\alpha {\text{ where each }}X_\alpha $$ is a principal element with (0:X_{\alpha })=0\} . The first three subsets L_{f}, L_{sr}, and L_{r} are augmented filters $$\mathcal{L}^0 $$ on L, i.e., $$\mathcal{L}^0 = \mathcal{L} \cup \left\{ 0 \right\}{\text{ where }}\mathcal{L}$$ is a multiplicatively closed subset of $L$ with $A\in $$\mathcal{L}$$ and $B\geq A$ with $B\in L$ implies $B\in $$\mathcal{L}$$ and hence are sublattices of $L$ closed under multiplication. We first consider the more general situation of augmented filters on $L.$ These results are then applied to study the four previously defined subsets for $L$ an $r$-lattice or Noether lattice (i.e., an $r$-lattice with ACC). Finally, we give a brief discussion of how the results for augmented lattices can be applied to subsets of $L$ which are “regular” with respect to an $L$-module. © Kluwer Academic Publishers 2002 |
abstract_unstemmed |
Abstract Let L be an r-lattice, i.e., a modular multiplicative lattice that is compactly generated, principally generated, and has greatest element 1 compact. We consider certain subsets of L consisting of “regular elements”: $$L_f = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|\left. {(0:A) = 0} \right\},L_{sr} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a compact element $$X \leqslant A$$ with $$\left. {(0:X) = 0} \right\},L_r = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a principal element $$X \leqslant A{\text{ with }}\left. {(0:X) = 0} \right\},{\text{ and }}L_{rg} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|A = \bigvee _\alpha X_\alpha {\text{ where each }}X_\alpha $$ is a principal element with (0:X_{\alpha })=0\} . The first three subsets L_{f}, L_{sr}, and L_{r} are augmented filters $$\mathcal{L}^0 $$ on L, i.e., $$\mathcal{L}^0 = \mathcal{L} \cup \left\{ 0 \right\}{\text{ where }}\mathcal{L}$$ is a multiplicatively closed subset of $L$ with $A\in $$\mathcal{L}$$ and $B\geq A$ with $B\in L$ implies $B\in $$\mathcal{L}$$ and hence are sublattices of $L$ closed under multiplication. We first consider the more general situation of augmented filters on $L.$ These results are then applied to study the four previously defined subsets for $L$ an $r$-lattice or Noether lattice (i.e., an $r$-lattice with ACC). Finally, we give a brief discussion of how the results for augmented lattices can be applied to subsets of $L$ which are “regular” with respect to an $L$-module. © Kluwer Academic Publishers 2002 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_30 GBV_ILN_40 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2088 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4316 GBV_ILN_4318 |
container_issue |
1 |
title_short |
Sublattices of regular elements |
url |
https://doi.org/10.1023/A:1014932204184 |
remote_bool |
false |
author2 |
Johnson, E. W. Spellerberg II, Richard L. |
author2Str |
Johnson, E. W. Spellerberg II, Richard L. |
ppnlink |
129291307 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1014932204184 |
up_date |
2024-07-04T04:33:07.117Z |
_version_ |
1803621590230892544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2036923062</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503173201.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2002 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1014932204184</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2036923062</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1014932204184-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anderson, D. D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sublattices of regular elements</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2002</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kluwer Academic Publishers 2002</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let L be an r-lattice, i.e., a modular multiplicative lattice that is compactly generated, principally generated, and has greatest element 1 compact. We consider certain subsets of L consisting of “regular elements”: $$L_f = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|\left. {(0:A) = 0} \right\},L_{sr} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a compact element $$X \leqslant A$$ with $$\left. {(0:X) = 0} \right\},L_r = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|$$ there is a principal element $$X \leqslant A{\text{ with }}\left. {(0:X) = 0} \right\},{\text{ and }}L_{rg} = \left\{ 0 \right\} \cup \left\{ A \right. \in \left. L \right|A = \bigvee _\alpha X_\alpha {\text{ where each }}X_\alpha $$ is a principal element with (0:X_{\alpha })=0\} . The first three subsets L_{f}, L_{sr}, and L_{r} are augmented filters $$\mathcal{L}^0 $$ on L, i.e., $$\mathcal{L}^0 = \mathcal{L} \cup \left\{ 0 \right\}{\text{ where }}\mathcal{L}$$ is a multiplicatively closed subset of $L$ with $A\in $$\mathcal{L}$$ and $B\geq A$ with $B\in L$ implies $B\in $$\mathcal{L}$$ and hence are sublattices of $L$ closed under multiplication. We first consider the more general situation of augmented filters on $L.$ These results are then applied to study the four previously defined subsets for $L$ an $r$-lattice or Noether lattice (i.e., an $r$-lattice with ACC). Finally, we give a brief discussion of how the results for augmented lattices can be applied to subsets of $L$ which are “regular” with respect to an $L$-module.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General Situation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regular Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Great Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Principal Element</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compact Element</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johnson, E. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spellerberg II, Richard L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Periodica mathematica Hungarica</subfield><subfield code="d">Kluwer Academic Publishers, 1971</subfield><subfield code="g">44(2002), 1 vom: März, Seite 111-126</subfield><subfield code="w">(DE-627)129291307</subfield><subfield code="w">(DE-600)120494-4</subfield><subfield code="w">(DE-576)014472597</subfield><subfield code="x">0031-5303</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2002</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:111-126</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1014932204184</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4316</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2002</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">111-126</subfield></datafield></record></collection>
|
score |
7.4001513 |