Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems
Abstract Dual control and observation problems for the wave equation with variable coefficients subject to Dirichlet boundary conditions are solved by a variational method. This method was earlier proposed by the author for an approximate analysis of linear equations with nonuniform perturbations of...
Ausführliche Beschreibung
Autor*in: |
Potapov, M. M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Schlagwörter: |
---|
Anmerkung: |
© MAIK “Nauka/Interperiodica” 2006 |
---|
Übergeordnetes Werk: |
Enthalten in: Computational mathematics and mathematical physics - Nauka/Interperiodica, 1992, 46(2006), 12 vom: Dez., Seite 2092-2109 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2006 ; number:12 ; month:12 ; pages:2092-2109 |
Links: |
---|
DOI / URN: |
10.1134/S0965542506120086 |
---|
Katalog-ID: |
OLC2037341652 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2037341652 | ||
003 | DE-627 | ||
005 | 20230504115431.0 | ||
007 | tu | ||
008 | 200820s2006 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1134/S0965542506120086 |2 doi | |
035 | |a (DE-627)OLC2037341652 | ||
035 | |a (DE-He213)S0965542506120086-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Potapov, M. M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © MAIK “Nauka/Interperiodica” 2006 | ||
520 | |a Abstract Dual control and observation problems for the wave equation with variable coefficients subject to Dirichlet boundary conditions are solved by a variational method. This method was earlier proposed by the author for an approximate analysis of linear equations with nonuniform perturbations of the operator. Explicit bounds on the constant that are required to implement the method are obtained using the correct solvability property of the dual observation problem. Finite-dimensional approximations of the control and observation problems are obtained by the difference method preserving the duality relation. The convergence of approximate solutions is established in the norms of the corresponding dual spaces. | ||
650 | 4 | |a wave equation | |
650 | 4 | |a controllability | |
650 | 4 | |a observability | |
650 | 4 | |a duality | |
650 | 4 | |a finite-dimensional approximation | |
650 | 4 | |a convergence | |
773 | 0 | 8 | |i Enthalten in |t Computational mathematics and mathematical physics |d Nauka/Interperiodica, 1992 |g 46(2006), 12 vom: Dez., Seite 2092-2109 |w (DE-627)131059181 |w (DE-600)1106328-2 |w (DE-576)029158060 |x 0965-5425 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2006 |g number:12 |g month:12 |g pages:2092-2109 |
856 | 4 | 1 | |u https://doi.org/10.1134/S0965542506120086 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4311 | ||
951 | |a AR | ||
952 | |d 46 |j 2006 |e 12 |c 12 |h 2092-2109 |
author_variant |
m m p mm mmp |
---|---|
matchkey_str |
article:09655425:2006----::prxmtsltosoiihecnrlrbesoteaeqainnooecas |
hierarchy_sort_str |
2006 |
publishDate |
2006 |
allfields |
10.1134/S0965542506120086 doi (DE-627)OLC2037341652 (DE-He213)S0965542506120086-p DE-627 ger DE-627 rakwb eng 510 VZ Potapov, M. M. verfasserin aut Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2006 Abstract Dual control and observation problems for the wave equation with variable coefficients subject to Dirichlet boundary conditions are solved by a variational method. This method was earlier proposed by the author for an approximate analysis of linear equations with nonuniform perturbations of the operator. Explicit bounds on the constant that are required to implement the method are obtained using the correct solvability property of the dual observation problem. Finite-dimensional approximations of the control and observation problems are obtained by the difference method preserving the duality relation. The convergence of approximate solutions is established in the norms of the corresponding dual spaces. wave equation controllability observability duality finite-dimensional approximation convergence Enthalten in Computational mathematics and mathematical physics Nauka/Interperiodica, 1992 46(2006), 12 vom: Dez., Seite 2092-2109 (DE-627)131059181 (DE-600)1106328-2 (DE-576)029158060 0965-5425 nnns volume:46 year:2006 number:12 month:12 pages:2092-2109 https://doi.org/10.1134/S0965542506120086 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4311 AR 46 2006 12 12 2092-2109 |
spelling |
10.1134/S0965542506120086 doi (DE-627)OLC2037341652 (DE-He213)S0965542506120086-p DE-627 ger DE-627 rakwb eng 510 VZ Potapov, M. M. verfasserin aut Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2006 Abstract Dual control and observation problems for the wave equation with variable coefficients subject to Dirichlet boundary conditions are solved by a variational method. This method was earlier proposed by the author for an approximate analysis of linear equations with nonuniform perturbations of the operator. Explicit bounds on the constant that are required to implement the method are obtained using the correct solvability property of the dual observation problem. Finite-dimensional approximations of the control and observation problems are obtained by the difference method preserving the duality relation. The convergence of approximate solutions is established in the norms of the corresponding dual spaces. wave equation controllability observability duality finite-dimensional approximation convergence Enthalten in Computational mathematics and mathematical physics Nauka/Interperiodica, 1992 46(2006), 12 vom: Dez., Seite 2092-2109 (DE-627)131059181 (DE-600)1106328-2 (DE-576)029158060 0965-5425 nnns volume:46 year:2006 number:12 month:12 pages:2092-2109 https://doi.org/10.1134/S0965542506120086 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4311 AR 46 2006 12 12 2092-2109 |
allfields_unstemmed |
10.1134/S0965542506120086 doi (DE-627)OLC2037341652 (DE-He213)S0965542506120086-p DE-627 ger DE-627 rakwb eng 510 VZ Potapov, M. M. verfasserin aut Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2006 Abstract Dual control and observation problems for the wave equation with variable coefficients subject to Dirichlet boundary conditions are solved by a variational method. This method was earlier proposed by the author for an approximate analysis of linear equations with nonuniform perturbations of the operator. Explicit bounds on the constant that are required to implement the method are obtained using the correct solvability property of the dual observation problem. Finite-dimensional approximations of the control and observation problems are obtained by the difference method preserving the duality relation. The convergence of approximate solutions is established in the norms of the corresponding dual spaces. wave equation controllability observability duality finite-dimensional approximation convergence Enthalten in Computational mathematics and mathematical physics Nauka/Interperiodica, 1992 46(2006), 12 vom: Dez., Seite 2092-2109 (DE-627)131059181 (DE-600)1106328-2 (DE-576)029158060 0965-5425 nnns volume:46 year:2006 number:12 month:12 pages:2092-2109 https://doi.org/10.1134/S0965542506120086 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4311 AR 46 2006 12 12 2092-2109 |
allfieldsGer |
10.1134/S0965542506120086 doi (DE-627)OLC2037341652 (DE-He213)S0965542506120086-p DE-627 ger DE-627 rakwb eng 510 VZ Potapov, M. M. verfasserin aut Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2006 Abstract Dual control and observation problems for the wave equation with variable coefficients subject to Dirichlet boundary conditions are solved by a variational method. This method was earlier proposed by the author for an approximate analysis of linear equations with nonuniform perturbations of the operator. Explicit bounds on the constant that are required to implement the method are obtained using the correct solvability property of the dual observation problem. Finite-dimensional approximations of the control and observation problems are obtained by the difference method preserving the duality relation. The convergence of approximate solutions is established in the norms of the corresponding dual spaces. wave equation controllability observability duality finite-dimensional approximation convergence Enthalten in Computational mathematics and mathematical physics Nauka/Interperiodica, 1992 46(2006), 12 vom: Dez., Seite 2092-2109 (DE-627)131059181 (DE-600)1106328-2 (DE-576)029158060 0965-5425 nnns volume:46 year:2006 number:12 month:12 pages:2092-2109 https://doi.org/10.1134/S0965542506120086 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4311 AR 46 2006 12 12 2092-2109 |
allfieldsSound |
10.1134/S0965542506120086 doi (DE-627)OLC2037341652 (DE-He213)S0965542506120086-p DE-627 ger DE-627 rakwb eng 510 VZ Potapov, M. M. verfasserin aut Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems 2006 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © MAIK “Nauka/Interperiodica” 2006 Abstract Dual control and observation problems for the wave equation with variable coefficients subject to Dirichlet boundary conditions are solved by a variational method. This method was earlier proposed by the author for an approximate analysis of linear equations with nonuniform perturbations of the operator. Explicit bounds on the constant that are required to implement the method are obtained using the correct solvability property of the dual observation problem. Finite-dimensional approximations of the control and observation problems are obtained by the difference method preserving the duality relation. The convergence of approximate solutions is established in the norms of the corresponding dual spaces. wave equation controllability observability duality finite-dimensional approximation convergence Enthalten in Computational mathematics and mathematical physics Nauka/Interperiodica, 1992 46(2006), 12 vom: Dez., Seite 2092-2109 (DE-627)131059181 (DE-600)1106328-2 (DE-576)029158060 0965-5425 nnns volume:46 year:2006 number:12 month:12 pages:2092-2109 https://doi.org/10.1134/S0965542506120086 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4311 AR 46 2006 12 12 2092-2109 |
language |
English |
source |
Enthalten in Computational mathematics and mathematical physics 46(2006), 12 vom: Dez., Seite 2092-2109 volume:46 year:2006 number:12 month:12 pages:2092-2109 |
sourceStr |
Enthalten in Computational mathematics and mathematical physics 46(2006), 12 vom: Dez., Seite 2092-2109 volume:46 year:2006 number:12 month:12 pages:2092-2109 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wave equation controllability observability duality finite-dimensional approximation convergence |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Computational mathematics and mathematical physics |
authorswithroles_txt_mv |
Potapov, M. M. @@aut@@ |
publishDateDaySort_date |
2006-12-01T00:00:00Z |
hierarchy_top_id |
131059181 |
dewey-sort |
3510 |
id |
OLC2037341652 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2037341652</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504115431.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0965542506120086</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2037341652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0965542506120086-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Potapov, M. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK “Nauka/Interperiodica” 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Dual control and observation problems for the wave equation with variable coefficients subject to Dirichlet boundary conditions are solved by a variational method. This method was earlier proposed by the author for an approximate analysis of linear equations with nonuniform perturbations of the operator. Explicit bounds on the constant that are required to implement the method are obtained using the correct solvability property of the dual observation problem. Finite-dimensional approximations of the control and observation problems are obtained by the difference method preserving the duality relation. The convergence of approximate solutions is established in the norms of the corresponding dual spaces.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wave equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">controllability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">observability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">duality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite-dimensional approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational mathematics and mathematical physics</subfield><subfield code="d">Nauka/Interperiodica, 1992</subfield><subfield code="g">46(2006), 12 vom: Dez., Seite 2092-2109</subfield><subfield code="w">(DE-627)131059181</subfield><subfield code="w">(DE-600)1106328-2</subfield><subfield code="w">(DE-576)029158060</subfield><subfield code="x">0965-5425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:2092-2109</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0965542506120086</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2006</subfield><subfield code="e">12</subfield><subfield code="c">12</subfield><subfield code="h">2092-2109</subfield></datafield></record></collection>
|
author |
Potapov, M. M. |
spellingShingle |
Potapov, M. M. ddc 510 misc wave equation misc controllability misc observability misc duality misc finite-dimensional approximation misc convergence Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems |
authorStr |
Potapov, M. M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131059181 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0965-5425 |
topic_title |
510 VZ Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems wave equation controllability observability duality finite-dimensional approximation convergence |
topic |
ddc 510 misc wave equation misc controllability misc observability misc duality misc finite-dimensional approximation misc convergence |
topic_unstemmed |
ddc 510 misc wave equation misc controllability misc observability misc duality misc finite-dimensional approximation misc convergence |
topic_browse |
ddc 510 misc wave equation misc controllability misc observability misc duality misc finite-dimensional approximation misc convergence |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Computational mathematics and mathematical physics |
hierarchy_parent_id |
131059181 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Computational mathematics and mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131059181 (DE-600)1106328-2 (DE-576)029158060 |
title |
Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems |
ctrlnum |
(DE-627)OLC2037341652 (DE-He213)S0965542506120086-p |
title_full |
Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems |
author_sort |
Potapov, M. M. |
journal |
Computational mathematics and mathematical physics |
journalStr |
Computational mathematics and mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
2092 |
author_browse |
Potapov, M. M. |
container_volume |
46 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Potapov, M. M. |
doi_str_mv |
10.1134/S0965542506120086 |
dewey-full |
510 |
title_sort |
approximate solutions to dirichlet control problems for the wave equation in sobolev classes and dual observation problems |
title_auth |
Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems |
abstract |
Abstract Dual control and observation problems for the wave equation with variable coefficients subject to Dirichlet boundary conditions are solved by a variational method. This method was earlier proposed by the author for an approximate analysis of linear equations with nonuniform perturbations of the operator. Explicit bounds on the constant that are required to implement the method are obtained using the correct solvability property of the dual observation problem. Finite-dimensional approximations of the control and observation problems are obtained by the difference method preserving the duality relation. The convergence of approximate solutions is established in the norms of the corresponding dual spaces. © MAIK “Nauka/Interperiodica” 2006 |
abstractGer |
Abstract Dual control and observation problems for the wave equation with variable coefficients subject to Dirichlet boundary conditions are solved by a variational method. This method was earlier proposed by the author for an approximate analysis of linear equations with nonuniform perturbations of the operator. Explicit bounds on the constant that are required to implement the method are obtained using the correct solvability property of the dual observation problem. Finite-dimensional approximations of the control and observation problems are obtained by the difference method preserving the duality relation. The convergence of approximate solutions is established in the norms of the corresponding dual spaces. © MAIK “Nauka/Interperiodica” 2006 |
abstract_unstemmed |
Abstract Dual control and observation problems for the wave equation with variable coefficients subject to Dirichlet boundary conditions are solved by a variational method. This method was earlier proposed by the author for an approximate analysis of linear equations with nonuniform perturbations of the operator. Explicit bounds on the constant that are required to implement the method are obtained using the correct solvability property of the dual observation problem. Finite-dimensional approximations of the control and observation problems are obtained by the difference method preserving the duality relation. The convergence of approximate solutions is established in the norms of the corresponding dual spaces. © MAIK “Nauka/Interperiodica” 2006 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 GBV_ILN_4311 |
container_issue |
12 |
title_short |
Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems |
url |
https://doi.org/10.1134/S0965542506120086 |
remote_bool |
false |
ppnlink |
131059181 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0965542506120086 |
up_date |
2024-07-03T14:47:20.509Z |
_version_ |
1803569636844765184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2037341652</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230504115431.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200820s2006 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0965542506120086</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2037341652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)S0965542506120086-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Potapov, M. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximate solutions to Dirichlet control problems for the wave equation in Sobolev classes and dual observation problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© MAIK “Nauka/Interperiodica” 2006</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Dual control and observation problems for the wave equation with variable coefficients subject to Dirichlet boundary conditions are solved by a variational method. This method was earlier proposed by the author for an approximate analysis of linear equations with nonuniform perturbations of the operator. Explicit bounds on the constant that are required to implement the method are obtained using the correct solvability property of the dual observation problem. Finite-dimensional approximations of the control and observation problems are obtained by the difference method preserving the duality relation. The convergence of approximate solutions is established in the norms of the corresponding dual spaces.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wave equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">controllability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">observability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">duality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite-dimensional approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational mathematics and mathematical physics</subfield><subfield code="d">Nauka/Interperiodica, 1992</subfield><subfield code="g">46(2006), 12 vom: Dez., Seite 2092-2109</subfield><subfield code="w">(DE-627)131059181</subfield><subfield code="w">(DE-600)1106328-2</subfield><subfield code="w">(DE-576)029158060</subfield><subfield code="x">0965-5425</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:12</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:2092-2109</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1134/S0965542506120086</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2006</subfield><subfield code="e">12</subfield><subfield code="c">12</subfield><subfield code="h">2092-2109</subfield></datafield></record></collection>
|
score |
7.401496 |