Tomographic Description of Stimulated Brillouin Scattering of Light
Abstract The process of stimulated Brillouin scattering is described by the two‐dimensional oscillator model. Photons of the Stokes mode are described by one mode of the oscillator, and acoustic phonons are described by the other mode. The interaction of photons and acoustic phonons is assumed to be...
Ausführliche Beschreibung
Autor*in: |
Man'ko, Olga V. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2001 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Plenum Publishing Corporation 2001 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of Russian laser research - Kluwer Academic Publishers-Plenum Publishers, 1994, 22(2001), 3 vom: Mai, Seite 201-218 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2001 ; number:3 ; month:05 ; pages:201-218 |
Links: |
---|
DOI / URN: |
10.1023/A:1011304404336 |
---|
Katalog-ID: |
OLC2038447144 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038447144 | ||
003 | DE-627 | ||
005 | 20230503151634.0 | ||
007 | tu | ||
008 | 200819s2001 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1023/A:1011304404336 |2 doi | |
035 | |a (DE-627)OLC2038447144 | ||
035 | |a (DE-He213)A:1011304404336-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Man'ko, Olga V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Tomographic Description of Stimulated Brillouin Scattering of Light |
264 | 1 | |c 2001 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Plenum Publishing Corporation 2001 | ||
520 | |a Abstract The process of stimulated Brillouin scattering is described by the two‐dimensional oscillator model. Photons of the Stokes mode are described by one mode of the oscillator, and acoustic phonons are described by the other mode. The interaction of photons and acoustic phonons is assumed to be quadratic in the creation and annihilation operators of photons and phonons. The laser is considered as a classical light source and its depletion is neglected. New time‐dependent integrals of motion and the photon–phonon probability distribution function are found. The mean Stokes photon number and the mean acoustic phonon number are expressed as functions of the medium parameters (initial dispersions) and the interaction parameter (coupling constant). The classical propagator for stimulated Brillouin scattering and tomograms of the photon and phonon states are investigated within the framework of the symplectic‐tomography scheme. | ||
650 | 4 | |a Distribution Function | |
650 | 4 | |a Probability Distribution | |
650 | 4 | |a Light Source | |
650 | 4 | |a Interaction Parameter | |
650 | 4 | |a Probability Distribution Function | |
700 | 1 | |a Tcherniega, N. V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of Russian laser research |d Kluwer Academic Publishers-Plenum Publishers, 1994 |g 22(2001), 3 vom: Mai, Seite 201-218 |w (DE-627)182306879 |w (DE-600)1195919-8 |w (DE-576)045287678 |x 1071-2836 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2001 |g number:3 |g month:05 |g pages:201-218 |
856 | 4 | 1 | |u https://doi.org/10.1023/A:1011304404336 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 22 |j 2001 |e 3 |c 05 |h 201-218 |
author_variant |
o v m ov ovm n v t nv nvt |
---|---|
matchkey_str |
article:10712836:2001----::oorpidsrpinftmltdrlois |
hierarchy_sort_str |
2001 |
publishDate |
2001 |
allfields |
10.1023/A:1011304404336 doi (DE-627)OLC2038447144 (DE-He213)A:1011304404336-p DE-627 ger DE-627 rakwb eng 530 VZ Man'ko, Olga V. verfasserin aut Tomographic Description of Stimulated Brillouin Scattering of Light 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2001 Abstract The process of stimulated Brillouin scattering is described by the two‐dimensional oscillator model. Photons of the Stokes mode are described by one mode of the oscillator, and acoustic phonons are described by the other mode. The interaction of photons and acoustic phonons is assumed to be quadratic in the creation and annihilation operators of photons and phonons. The laser is considered as a classical light source and its depletion is neglected. New time‐dependent integrals of motion and the photon–phonon probability distribution function are found. The mean Stokes photon number and the mean acoustic phonon number are expressed as functions of the medium parameters (initial dispersions) and the interaction parameter (coupling constant). The classical propagator for stimulated Brillouin scattering and tomograms of the photon and phonon states are investigated within the framework of the symplectic‐tomography scheme. Distribution Function Probability Distribution Light Source Interaction Parameter Probability Distribution Function Tcherniega, N. V. aut Enthalten in Journal of Russian laser research Kluwer Academic Publishers-Plenum Publishers, 1994 22(2001), 3 vom: Mai, Seite 201-218 (DE-627)182306879 (DE-600)1195919-8 (DE-576)045287678 1071-2836 nnns volume:22 year:2001 number:3 month:05 pages:201-218 https://doi.org/10.1023/A:1011304404336 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 22 2001 3 05 201-218 |
spelling |
10.1023/A:1011304404336 doi (DE-627)OLC2038447144 (DE-He213)A:1011304404336-p DE-627 ger DE-627 rakwb eng 530 VZ Man'ko, Olga V. verfasserin aut Tomographic Description of Stimulated Brillouin Scattering of Light 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2001 Abstract The process of stimulated Brillouin scattering is described by the two‐dimensional oscillator model. Photons of the Stokes mode are described by one mode of the oscillator, and acoustic phonons are described by the other mode. The interaction of photons and acoustic phonons is assumed to be quadratic in the creation and annihilation operators of photons and phonons. The laser is considered as a classical light source and its depletion is neglected. New time‐dependent integrals of motion and the photon–phonon probability distribution function are found. The mean Stokes photon number and the mean acoustic phonon number are expressed as functions of the medium parameters (initial dispersions) and the interaction parameter (coupling constant). The classical propagator for stimulated Brillouin scattering and tomograms of the photon and phonon states are investigated within the framework of the symplectic‐tomography scheme. Distribution Function Probability Distribution Light Source Interaction Parameter Probability Distribution Function Tcherniega, N. V. aut Enthalten in Journal of Russian laser research Kluwer Academic Publishers-Plenum Publishers, 1994 22(2001), 3 vom: Mai, Seite 201-218 (DE-627)182306879 (DE-600)1195919-8 (DE-576)045287678 1071-2836 nnns volume:22 year:2001 number:3 month:05 pages:201-218 https://doi.org/10.1023/A:1011304404336 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 22 2001 3 05 201-218 |
allfields_unstemmed |
10.1023/A:1011304404336 doi (DE-627)OLC2038447144 (DE-He213)A:1011304404336-p DE-627 ger DE-627 rakwb eng 530 VZ Man'ko, Olga V. verfasserin aut Tomographic Description of Stimulated Brillouin Scattering of Light 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2001 Abstract The process of stimulated Brillouin scattering is described by the two‐dimensional oscillator model. Photons of the Stokes mode are described by one mode of the oscillator, and acoustic phonons are described by the other mode. The interaction of photons and acoustic phonons is assumed to be quadratic in the creation and annihilation operators of photons and phonons. The laser is considered as a classical light source and its depletion is neglected. New time‐dependent integrals of motion and the photon–phonon probability distribution function are found. The mean Stokes photon number and the mean acoustic phonon number are expressed as functions of the medium parameters (initial dispersions) and the interaction parameter (coupling constant). The classical propagator for stimulated Brillouin scattering and tomograms of the photon and phonon states are investigated within the framework of the symplectic‐tomography scheme. Distribution Function Probability Distribution Light Source Interaction Parameter Probability Distribution Function Tcherniega, N. V. aut Enthalten in Journal of Russian laser research Kluwer Academic Publishers-Plenum Publishers, 1994 22(2001), 3 vom: Mai, Seite 201-218 (DE-627)182306879 (DE-600)1195919-8 (DE-576)045287678 1071-2836 nnns volume:22 year:2001 number:3 month:05 pages:201-218 https://doi.org/10.1023/A:1011304404336 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 22 2001 3 05 201-218 |
allfieldsGer |
10.1023/A:1011304404336 doi (DE-627)OLC2038447144 (DE-He213)A:1011304404336-p DE-627 ger DE-627 rakwb eng 530 VZ Man'ko, Olga V. verfasserin aut Tomographic Description of Stimulated Brillouin Scattering of Light 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2001 Abstract The process of stimulated Brillouin scattering is described by the two‐dimensional oscillator model. Photons of the Stokes mode are described by one mode of the oscillator, and acoustic phonons are described by the other mode. The interaction of photons and acoustic phonons is assumed to be quadratic in the creation and annihilation operators of photons and phonons. The laser is considered as a classical light source and its depletion is neglected. New time‐dependent integrals of motion and the photon–phonon probability distribution function are found. The mean Stokes photon number and the mean acoustic phonon number are expressed as functions of the medium parameters (initial dispersions) and the interaction parameter (coupling constant). The classical propagator for stimulated Brillouin scattering and tomograms of the photon and phonon states are investigated within the framework of the symplectic‐tomography scheme. Distribution Function Probability Distribution Light Source Interaction Parameter Probability Distribution Function Tcherniega, N. V. aut Enthalten in Journal of Russian laser research Kluwer Academic Publishers-Plenum Publishers, 1994 22(2001), 3 vom: Mai, Seite 201-218 (DE-627)182306879 (DE-600)1195919-8 (DE-576)045287678 1071-2836 nnns volume:22 year:2001 number:3 month:05 pages:201-218 https://doi.org/10.1023/A:1011304404336 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 22 2001 3 05 201-218 |
allfieldsSound |
10.1023/A:1011304404336 doi (DE-627)OLC2038447144 (DE-He213)A:1011304404336-p DE-627 ger DE-627 rakwb eng 530 VZ Man'ko, Olga V. verfasserin aut Tomographic Description of Stimulated Brillouin Scattering of Light 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Plenum Publishing Corporation 2001 Abstract The process of stimulated Brillouin scattering is described by the two‐dimensional oscillator model. Photons of the Stokes mode are described by one mode of the oscillator, and acoustic phonons are described by the other mode. The interaction of photons and acoustic phonons is assumed to be quadratic in the creation and annihilation operators of photons and phonons. The laser is considered as a classical light source and its depletion is neglected. New time‐dependent integrals of motion and the photon–phonon probability distribution function are found. The mean Stokes photon number and the mean acoustic phonon number are expressed as functions of the medium parameters (initial dispersions) and the interaction parameter (coupling constant). The classical propagator for stimulated Brillouin scattering and tomograms of the photon and phonon states are investigated within the framework of the symplectic‐tomography scheme. Distribution Function Probability Distribution Light Source Interaction Parameter Probability Distribution Function Tcherniega, N. V. aut Enthalten in Journal of Russian laser research Kluwer Academic Publishers-Plenum Publishers, 1994 22(2001), 3 vom: Mai, Seite 201-218 (DE-627)182306879 (DE-600)1195919-8 (DE-576)045287678 1071-2836 nnns volume:22 year:2001 number:3 month:05 pages:201-218 https://doi.org/10.1023/A:1011304404336 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 AR 22 2001 3 05 201-218 |
language |
English |
source |
Enthalten in Journal of Russian laser research 22(2001), 3 vom: Mai, Seite 201-218 volume:22 year:2001 number:3 month:05 pages:201-218 |
sourceStr |
Enthalten in Journal of Russian laser research 22(2001), 3 vom: Mai, Seite 201-218 volume:22 year:2001 number:3 month:05 pages:201-218 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Distribution Function Probability Distribution Light Source Interaction Parameter Probability Distribution Function |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of Russian laser research |
authorswithroles_txt_mv |
Man'ko, Olga V. @@aut@@ Tcherniega, N. V. @@aut@@ |
publishDateDaySort_date |
2001-05-01T00:00:00Z |
hierarchy_top_id |
182306879 |
dewey-sort |
3530 |
id |
OLC2038447144 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038447144</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503151634.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1011304404336</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038447144</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1011304404336-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Man'ko, Olga V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tomographic Description of Stimulated Brillouin Scattering of Light</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The process of stimulated Brillouin scattering is described by the two‐dimensional oscillator model. Photons of the Stokes mode are described by one mode of the oscillator, and acoustic phonons are described by the other mode. The interaction of photons and acoustic phonons is assumed to be quadratic in the creation and annihilation operators of photons and phonons. The laser is considered as a classical light source and its depletion is neglected. New time‐dependent integrals of motion and the photon–phonon probability distribution function are found. The mean Stokes photon number and the mean acoustic phonon number are expressed as functions of the medium parameters (initial dispersions) and the interaction parameter (coupling constant). The classical propagator for stimulated Brillouin scattering and tomograms of the photon and phonon states are investigated within the framework of the symplectic‐tomography scheme.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light Source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interaction Parameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Distribution Function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tcherniega, N. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Russian laser research</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1994</subfield><subfield code="g">22(2001), 3 vom: Mai, Seite 201-218</subfield><subfield code="w">(DE-627)182306879</subfield><subfield code="w">(DE-600)1195919-8</subfield><subfield code="w">(DE-576)045287678</subfield><subfield code="x">1071-2836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:3</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:201-218</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1011304404336</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2001</subfield><subfield code="e">3</subfield><subfield code="c">05</subfield><subfield code="h">201-218</subfield></datafield></record></collection>
|
author |
Man'ko, Olga V. |
spellingShingle |
Man'ko, Olga V. ddc 530 misc Distribution Function misc Probability Distribution misc Light Source misc Interaction Parameter misc Probability Distribution Function Tomographic Description of Stimulated Brillouin Scattering of Light |
authorStr |
Man'ko, Olga V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182306879 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1071-2836 |
topic_title |
530 VZ Tomographic Description of Stimulated Brillouin Scattering of Light Distribution Function Probability Distribution Light Source Interaction Parameter Probability Distribution Function |
topic |
ddc 530 misc Distribution Function misc Probability Distribution misc Light Source misc Interaction Parameter misc Probability Distribution Function |
topic_unstemmed |
ddc 530 misc Distribution Function misc Probability Distribution misc Light Source misc Interaction Parameter misc Probability Distribution Function |
topic_browse |
ddc 530 misc Distribution Function misc Probability Distribution misc Light Source misc Interaction Parameter misc Probability Distribution Function |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of Russian laser research |
hierarchy_parent_id |
182306879 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of Russian laser research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182306879 (DE-600)1195919-8 (DE-576)045287678 |
title |
Tomographic Description of Stimulated Brillouin Scattering of Light |
ctrlnum |
(DE-627)OLC2038447144 (DE-He213)A:1011304404336-p |
title_full |
Tomographic Description of Stimulated Brillouin Scattering of Light |
author_sort |
Man'ko, Olga V. |
journal |
Journal of Russian laser research |
journalStr |
Journal of Russian laser research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2001 |
contenttype_str_mv |
txt |
container_start_page |
201 |
author_browse |
Man'ko, Olga V. Tcherniega, N. V. |
container_volume |
22 |
class |
530 VZ |
format_se |
Aufsätze |
author-letter |
Man'ko, Olga V. |
doi_str_mv |
10.1023/A:1011304404336 |
dewey-full |
530 |
title_sort |
tomographic description of stimulated brillouin scattering of light |
title_auth |
Tomographic Description of Stimulated Brillouin Scattering of Light |
abstract |
Abstract The process of stimulated Brillouin scattering is described by the two‐dimensional oscillator model. Photons of the Stokes mode are described by one mode of the oscillator, and acoustic phonons are described by the other mode. The interaction of photons and acoustic phonons is assumed to be quadratic in the creation and annihilation operators of photons and phonons. The laser is considered as a classical light source and its depletion is neglected. New time‐dependent integrals of motion and the photon–phonon probability distribution function are found. The mean Stokes photon number and the mean acoustic phonon number are expressed as functions of the medium parameters (initial dispersions) and the interaction parameter (coupling constant). The classical propagator for stimulated Brillouin scattering and tomograms of the photon and phonon states are investigated within the framework of the symplectic‐tomography scheme. © Plenum Publishing Corporation 2001 |
abstractGer |
Abstract The process of stimulated Brillouin scattering is described by the two‐dimensional oscillator model. Photons of the Stokes mode are described by one mode of the oscillator, and acoustic phonons are described by the other mode. The interaction of photons and acoustic phonons is assumed to be quadratic in the creation and annihilation operators of photons and phonons. The laser is considered as a classical light source and its depletion is neglected. New time‐dependent integrals of motion and the photon–phonon probability distribution function are found. The mean Stokes photon number and the mean acoustic phonon number are expressed as functions of the medium parameters (initial dispersions) and the interaction parameter (coupling constant). The classical propagator for stimulated Brillouin scattering and tomograms of the photon and phonon states are investigated within the framework of the symplectic‐tomography scheme. © Plenum Publishing Corporation 2001 |
abstract_unstemmed |
Abstract The process of stimulated Brillouin scattering is described by the two‐dimensional oscillator model. Photons of the Stokes mode are described by one mode of the oscillator, and acoustic phonons are described by the other mode. The interaction of photons and acoustic phonons is assumed to be quadratic in the creation and annihilation operators of photons and phonons. The laser is considered as a classical light source and its depletion is neglected. New time‐dependent integrals of motion and the photon–phonon probability distribution function are found. The mean Stokes photon number and the mean acoustic phonon number are expressed as functions of the medium parameters (initial dispersions) and the interaction parameter (coupling constant). The classical propagator for stimulated Brillouin scattering and tomograms of the photon and phonon states are investigated within the framework of the symplectic‐tomography scheme. © Plenum Publishing Corporation 2001 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
3 |
title_short |
Tomographic Description of Stimulated Brillouin Scattering of Light |
url |
https://doi.org/10.1023/A:1011304404336 |
remote_bool |
false |
author2 |
Tcherniega, N. V. |
author2Str |
Tcherniega, N. V. |
ppnlink |
182306879 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1023/A:1011304404336 |
up_date |
2024-07-03T18:54:19.560Z |
_version_ |
1803585175745986560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038447144</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503151634.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1023/A:1011304404336</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038447144</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)A:1011304404336-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Man'ko, Olga V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tomographic Description of Stimulated Brillouin Scattering of Light</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Plenum Publishing Corporation 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The process of stimulated Brillouin scattering is described by the two‐dimensional oscillator model. Photons of the Stokes mode are described by one mode of the oscillator, and acoustic phonons are described by the other mode. The interaction of photons and acoustic phonons is assumed to be quadratic in the creation and annihilation operators of photons and phonons. The laser is considered as a classical light source and its depletion is neglected. New time‐dependent integrals of motion and the photon–phonon probability distribution function are found. The mean Stokes photon number and the mean acoustic phonon number are expressed as functions of the medium parameters (initial dispersions) and the interaction parameter (coupling constant). The classical propagator for stimulated Brillouin scattering and tomograms of the photon and phonon states are investigated within the framework of the symplectic‐tomography scheme.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution Function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light Source</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interaction Parameter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Distribution Function</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tcherniega, N. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of Russian laser research</subfield><subfield code="d">Kluwer Academic Publishers-Plenum Publishers, 1994</subfield><subfield code="g">22(2001), 3 vom: Mai, Seite 201-218</subfield><subfield code="w">(DE-627)182306879</subfield><subfield code="w">(DE-600)1195919-8</subfield><subfield code="w">(DE-576)045287678</subfield><subfield code="x">1071-2836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:3</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:201-218</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1023/A:1011304404336</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2001</subfield><subfield code="e">3</subfield><subfield code="c">05</subfield><subfield code="h">201-218</subfield></datafield></record></collection>
|
score |
7.401513 |