A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms
Abstract A novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be e...
Ausführliche Beschreibung
Autor*in: |
Papaloukas, C. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2001 |
---|
Schlagwörter: |
---|
Anmerkung: |
© IFMBE 2001 |
---|
Übergeordnetes Werk: |
Enthalten in: Medical & biological engineering & computing - Springer-Verlag, 1977, 39(2001), 1 vom: Jan., Seite 105-112 |
---|---|
Übergeordnetes Werk: |
volume:39 ; year:2001 ; number:1 ; month:01 ; pages:105-112 |
Links: |
---|
DOI / URN: |
10.1007/BF02345273 |
---|
Katalog-ID: |
OLC2038676852 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2038676852 | ||
003 | DE-627 | ||
005 | 20230511075329.0 | ||
007 | tu | ||
008 | 200819s2001 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/BF02345273 |2 doi | |
035 | |a (DE-627)OLC2038676852 | ||
035 | |a (DE-He213)BF02345273-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 660 |a 570 |q VZ |
084 | |a 12 |2 ssgn | ||
100 | 1 | |a Papaloukas, C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms |
264 | 1 | |c 2001 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © IFMBE 2001 | ||
520 | |a Abstract A novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be executed in real time and is able to provide explanations for the diagnostic decisions obtained. The method was tested on the ESC ST-T database and high scores were obtained for both sensitivity and positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross statistics, and 90.7% and 80.7% using aggregate average statistics). | ||
650 | 4 | |a Ischaemic episodes detection | |
650 | 4 | |a Knowledge-based method | |
650 | 4 | |a ECG noise handling | |
700 | 1 | |a Fotiadis, D. I. |4 aut | |
700 | 1 | |a Liavas, A. P. |4 aut | |
700 | 1 | |a Likas, A. |4 aut | |
700 | 1 | |a Michalis, L. K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Medical & biological engineering & computing |d Springer-Verlag, 1977 |g 39(2001), 1 vom: Jan., Seite 105-112 |w (DE-627)129858552 |w (DE-600)282327-5 |w (DE-576)015165507 |x 0140-0118 |7 nnns |
773 | 1 | 8 | |g volume:39 |g year:2001 |g number:1 |g month:01 |g pages:105-112 |
856 | 4 | 1 | |u https://doi.org/10.1007/BF02345273 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4306 | ||
951 | |a AR | ||
952 | |d 39 |j 2001 |e 1 |c 01 |h 105-112 |
author_variant |
c p cp d i f di dif a p l ap apl a l al l k m lk lkm |
---|---|
matchkey_str |
article:01400118:2001----::koldeaetcnqeoatmtdeetooicamcpsdsnogu |
hierarchy_sort_str |
2001 |
publishDate |
2001 |
allfields |
10.1007/BF02345273 doi (DE-627)OLC2038676852 (DE-He213)BF02345273-p DE-627 ger DE-627 rakwb eng 610 660 570 VZ 12 ssgn Papaloukas, C. verfasserin aut A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © IFMBE 2001 Abstract A novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be executed in real time and is able to provide explanations for the diagnostic decisions obtained. The method was tested on the ESC ST-T database and high scores were obtained for both sensitivity and positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross statistics, and 90.7% and 80.7% using aggregate average statistics). Ischaemic episodes detection Knowledge-based method ECG noise handling Fotiadis, D. I. aut Liavas, A. P. aut Likas, A. aut Michalis, L. K. aut Enthalten in Medical & biological engineering & computing Springer-Verlag, 1977 39(2001), 1 vom: Jan., Seite 105-112 (DE-627)129858552 (DE-600)282327-5 (DE-576)015165507 0140-0118 nnns volume:39 year:2001 number:1 month:01 pages:105-112 https://doi.org/10.1007/BF02345273 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_32 GBV_ILN_34 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4219 GBV_ILN_4306 AR 39 2001 1 01 105-112 |
spelling |
10.1007/BF02345273 doi (DE-627)OLC2038676852 (DE-He213)BF02345273-p DE-627 ger DE-627 rakwb eng 610 660 570 VZ 12 ssgn Papaloukas, C. verfasserin aut A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © IFMBE 2001 Abstract A novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be executed in real time and is able to provide explanations for the diagnostic decisions obtained. The method was tested on the ESC ST-T database and high scores were obtained for both sensitivity and positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross statistics, and 90.7% and 80.7% using aggregate average statistics). Ischaemic episodes detection Knowledge-based method ECG noise handling Fotiadis, D. I. aut Liavas, A. P. aut Likas, A. aut Michalis, L. K. aut Enthalten in Medical & biological engineering & computing Springer-Verlag, 1977 39(2001), 1 vom: Jan., Seite 105-112 (DE-627)129858552 (DE-600)282327-5 (DE-576)015165507 0140-0118 nnns volume:39 year:2001 number:1 month:01 pages:105-112 https://doi.org/10.1007/BF02345273 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_32 GBV_ILN_34 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4219 GBV_ILN_4306 AR 39 2001 1 01 105-112 |
allfields_unstemmed |
10.1007/BF02345273 doi (DE-627)OLC2038676852 (DE-He213)BF02345273-p DE-627 ger DE-627 rakwb eng 610 660 570 VZ 12 ssgn Papaloukas, C. verfasserin aut A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © IFMBE 2001 Abstract A novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be executed in real time and is able to provide explanations for the diagnostic decisions obtained. The method was tested on the ESC ST-T database and high scores were obtained for both sensitivity and positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross statistics, and 90.7% and 80.7% using aggregate average statistics). Ischaemic episodes detection Knowledge-based method ECG noise handling Fotiadis, D. I. aut Liavas, A. P. aut Likas, A. aut Michalis, L. K. aut Enthalten in Medical & biological engineering & computing Springer-Verlag, 1977 39(2001), 1 vom: Jan., Seite 105-112 (DE-627)129858552 (DE-600)282327-5 (DE-576)015165507 0140-0118 nnns volume:39 year:2001 number:1 month:01 pages:105-112 https://doi.org/10.1007/BF02345273 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_32 GBV_ILN_34 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4219 GBV_ILN_4306 AR 39 2001 1 01 105-112 |
allfieldsGer |
10.1007/BF02345273 doi (DE-627)OLC2038676852 (DE-He213)BF02345273-p DE-627 ger DE-627 rakwb eng 610 660 570 VZ 12 ssgn Papaloukas, C. verfasserin aut A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © IFMBE 2001 Abstract A novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be executed in real time and is able to provide explanations for the diagnostic decisions obtained. The method was tested on the ESC ST-T database and high scores were obtained for both sensitivity and positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross statistics, and 90.7% and 80.7% using aggregate average statistics). Ischaemic episodes detection Knowledge-based method ECG noise handling Fotiadis, D. I. aut Liavas, A. P. aut Likas, A. aut Michalis, L. K. aut Enthalten in Medical & biological engineering & computing Springer-Verlag, 1977 39(2001), 1 vom: Jan., Seite 105-112 (DE-627)129858552 (DE-600)282327-5 (DE-576)015165507 0140-0118 nnns volume:39 year:2001 number:1 month:01 pages:105-112 https://doi.org/10.1007/BF02345273 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_32 GBV_ILN_34 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4219 GBV_ILN_4306 AR 39 2001 1 01 105-112 |
allfieldsSound |
10.1007/BF02345273 doi (DE-627)OLC2038676852 (DE-He213)BF02345273-p DE-627 ger DE-627 rakwb eng 610 660 570 VZ 12 ssgn Papaloukas, C. verfasserin aut A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms 2001 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © IFMBE 2001 Abstract A novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be executed in real time and is able to provide explanations for the diagnostic decisions obtained. The method was tested on the ESC ST-T database and high scores were obtained for both sensitivity and positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross statistics, and 90.7% and 80.7% using aggregate average statistics). Ischaemic episodes detection Knowledge-based method ECG noise handling Fotiadis, D. I. aut Liavas, A. P. aut Likas, A. aut Michalis, L. K. aut Enthalten in Medical & biological engineering & computing Springer-Verlag, 1977 39(2001), 1 vom: Jan., Seite 105-112 (DE-627)129858552 (DE-600)282327-5 (DE-576)015165507 0140-0118 nnns volume:39 year:2001 number:1 month:01 pages:105-112 https://doi.org/10.1007/BF02345273 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_32 GBV_ILN_34 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4219 GBV_ILN_4306 AR 39 2001 1 01 105-112 |
language |
English |
source |
Enthalten in Medical & biological engineering & computing 39(2001), 1 vom: Jan., Seite 105-112 volume:39 year:2001 number:1 month:01 pages:105-112 |
sourceStr |
Enthalten in Medical & biological engineering & computing 39(2001), 1 vom: Jan., Seite 105-112 volume:39 year:2001 number:1 month:01 pages:105-112 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ischaemic episodes detection Knowledge-based method ECG noise handling |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Medical & biological engineering & computing |
authorswithroles_txt_mv |
Papaloukas, C. @@aut@@ Fotiadis, D. I. @@aut@@ Liavas, A. P. @@aut@@ Likas, A. @@aut@@ Michalis, L. K. @@aut@@ |
publishDateDaySort_date |
2001-01-01T00:00:00Z |
hierarchy_top_id |
129858552 |
dewey-sort |
3610 |
id |
OLC2038676852 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038676852</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511075329.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02345273</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038676852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02345273-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">660</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Papaloukas, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© IFMBE 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be executed in real time and is able to provide explanations for the diagnostic decisions obtained. The method was tested on the ESC ST-T database and high scores were obtained for both sensitivity and positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross statistics, and 90.7% and 80.7% using aggregate average statistics).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ischaemic episodes detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knowledge-based method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ECG noise handling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fotiadis, D. I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liavas, A. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Likas, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michalis, L. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Medical & biological engineering & computing</subfield><subfield code="d">Springer-Verlag, 1977</subfield><subfield code="g">39(2001), 1 vom: Jan., Seite 105-112</subfield><subfield code="w">(DE-627)129858552</subfield><subfield code="w">(DE-600)282327-5</subfield><subfield code="w">(DE-576)015165507</subfield><subfield code="x">0140-0118</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:105-112</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02345273</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2001</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">105-112</subfield></datafield></record></collection>
|
author |
Papaloukas, C. |
spellingShingle |
Papaloukas, C. ddc 610 ssgn 12 misc Ischaemic episodes detection misc Knowledge-based method misc ECG noise handling A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms |
authorStr |
Papaloukas, C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129858552 |
format |
Article |
dewey-ones |
610 - Medicine & health 660 - Chemical engineering 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0140-0118 |
topic_title |
610 660 570 VZ 12 ssgn A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms Ischaemic episodes detection Knowledge-based method ECG noise handling |
topic |
ddc 610 ssgn 12 misc Ischaemic episodes detection misc Knowledge-based method misc ECG noise handling |
topic_unstemmed |
ddc 610 ssgn 12 misc Ischaemic episodes detection misc Knowledge-based method misc ECG noise handling |
topic_browse |
ddc 610 ssgn 12 misc Ischaemic episodes detection misc Knowledge-based method misc ECG noise handling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Medical & biological engineering & computing |
hierarchy_parent_id |
129858552 |
dewey-tens |
610 - Medicine & health 660 - Chemical engineering 570 - Life sciences; biology |
hierarchy_top_title |
Medical & biological engineering & computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129858552 (DE-600)282327-5 (DE-576)015165507 |
title |
A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms |
ctrlnum |
(DE-627)OLC2038676852 (DE-He213)BF02345273-p |
title_full |
A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms |
author_sort |
Papaloukas, C. |
journal |
Medical & biological engineering & computing |
journalStr |
Medical & biological engineering & computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2001 |
contenttype_str_mv |
txt |
container_start_page |
105 |
author_browse |
Papaloukas, C. Fotiadis, D. I. Liavas, A. P. Likas, A. Michalis, L. K. |
container_volume |
39 |
class |
610 660 570 VZ 12 ssgn |
format_se |
Aufsätze |
author-letter |
Papaloukas, C. |
doi_str_mv |
10.1007/BF02345273 |
dewey-full |
610 660 570 |
title_sort |
a knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms |
title_auth |
A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms |
abstract |
Abstract A novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be executed in real time and is able to provide explanations for the diagnostic decisions obtained. The method was tested on the ESC ST-T database and high scores were obtained for both sensitivity and positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross statistics, and 90.7% and 80.7% using aggregate average statistics). © IFMBE 2001 |
abstractGer |
Abstract A novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be executed in real time and is able to provide explanations for the diagnostic decisions obtained. The method was tested on the ESC ST-T database and high scores were obtained for both sensitivity and positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross statistics, and 90.7% and 80.7% using aggregate average statistics). © IFMBE 2001 |
abstract_unstemmed |
Abstract A novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be executed in real time and is able to provide explanations for the diagnostic decisions obtained. The method was tested on the ESC ST-T database and high scores were obtained for both sensitivity and positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross statistics, and 90.7% and 80.7% using aggregate average statistics). © IFMBE 2001 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_32 GBV_ILN_34 GBV_ILN_70 GBV_ILN_105 GBV_ILN_2004 GBV_ILN_2006 GBV_ILN_4012 GBV_ILN_4219 GBV_ILN_4306 |
container_issue |
1 |
title_short |
A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms |
url |
https://doi.org/10.1007/BF02345273 |
remote_bool |
false |
author2 |
Fotiadis, D. I. Liavas, A. P. Likas, A. Michalis, L. K. |
author2Str |
Fotiadis, D. I. Liavas, A. P. Likas, A. Michalis, L. K. |
ppnlink |
129858552 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF02345273 |
up_date |
2024-07-03T19:48:29.252Z |
_version_ |
1803588583303413760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2038676852</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511075329.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">200819s2001 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF02345273</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2038676852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)BF02345273-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">660</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Papaloukas, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A knowledge-based technique for automated detection of ischaemic episodes in long duration electrocardiograms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2001</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© IFMBE 2001</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A novel method for the detection of ischaemic episodes in long duration ECGs is proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding window classification and ischaemic episode identification, all integrated in a four-stage procedure. It can be executed in real time and is able to provide explanations for the diagnostic decisions obtained. The method was tested on the ESC ST-T database and high scores were obtained for both sensitivity and positive predictive accuracy (93.8% and 78.5% respectively using aggregate gross statistics, and 90.7% and 80.7% using aggregate average statistics).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ischaemic episodes detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knowledge-based method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ECG noise handling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fotiadis, D. I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liavas, A. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Likas, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michalis, L. K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Medical & biological engineering & computing</subfield><subfield code="d">Springer-Verlag, 1977</subfield><subfield code="g">39(2001), 1 vom: Jan., Seite 105-112</subfield><subfield code="w">(DE-627)129858552</subfield><subfield code="w">(DE-600)282327-5</subfield><subfield code="w">(DE-576)015165507</subfield><subfield code="x">0140-0118</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2001</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:105-112</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/BF02345273</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2001</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">105-112</subfield></datafield></record></collection>
|
score |
7.4017725 |